You Sank My Battleship! A Case Study to Evaluate State Channels as a Scaling Solution for Cryptocurrencies

  • Patrick McCorryEmail author
  • Chris Buckland
  • Surya Bakshi
  • Karl Wüst
  • Andrew Miller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11599)


Off-chain protocols (or so-called Layer 2) are heralded as a scaling solution for cryptocurrencies. One prominent approach, state channels, allows a group of parties to transact amongst themselves and the global blockchain is only used as a last resort to self-enforce any disputed transactions. To evaluate state channels as a scaling solution, we provide a proof of concept implementation for a two-player battleship game. It fits a category of applications that are not considered reasonable to execute on the blockchain, but it is widely perceived as an ideal application for off-chain protocols. We explore the minimal modifications required to deploy the battleship game as a state channel and propose a new state channel construction, Kitsune, which combines features from existing constructions. While in the optimistic case we demonstrate the battleship game can be played efficiently in a state channel, the requirement for unanimous off-chain agreement introduces new economic and time-based attacks that can render the game as unreasonable to play.


  1. 1.
    Al-Bassam, M., Sonnino, A., Bano, S., Hrycyszyn, D., Danezis, G.: Chainspace: a sharded smart contracts platform. arXiv preprint arXiv:1708.03778 (2017)
  2. 2.
    Back, A., et al.: Enabling blockchain innovations with pegged sidechains (2014)Google Scholar
  3. 3.
    Buterin, V.: EIP 1014: Skinny CREATE2. Accessed 08 Sept 2018
  4. 4.
    Close, T., Stewart, A.: Force move games. Accessed 08 Sept 2018
  5. 5.
    Coleman, J., Horne, L., Xuanji, L.: Counterfactual: generalized state channels (2018)Google Scholar
  6. 6.
    Croman, K.: On scaling decentralized blockchains. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 106–125. Springer, Heidelberg (2016). Scholar
  7. 7.
    DataGenetics: Battleship. Accessed 08 Sept 2018
  8. 8.
    Decker, C., Wattenhofer, R.: A fast and scalable payment network with Bitcoin duplex micropayment channels. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015. LNCS, vol. 9212, pp. 3–18. Springer, Cham (2015). Scholar
  9. 9.
    Dilley, J., Poelstra, A., Wilkins, J., Piekarska, M., Gorlick, B., Friedenbach, M.: Strong federations: an interoperable blockchain solution to centralized third-party risks. arXiv preprint arXiv:1612.05491 (2016)
  10. 10.
    Dziembowski, S., Eckey, L., Faust, S., Malinowski, D.: PERUN: virtual payment channels over cryptographic currencies. Technical report, IACR Cryptology ePrint Archive, 2017: 635 (2017)Google Scholar
  11. 11.
    Dziembowski, S., Faust, S., Hostáková, K.: General state channel networks. Cryptology ePrint Archive, Report 2018/320 (2018).
  12. 12.
    Etherscan. Ethereum gas price.: Accessed 08 Sept 2018
  13. 13.
    Eyal, I., Gencer, A.E., Sirer, E.G., Van Renesse, R.: Bitcoin-NG: a scalable blockchain protocol. In: NSDI, pp. 45–59 (2016)Google Scholar
  14. 14.
    Ethereum Foundation: Ethereum foundation grants update - wave III. Accessed 08 Sept 2018
  15. 15.
    Ethereum Community Fund: Meet the grantees ECF class of 2018 Part II. Accessed 08 Sept 2018
  16. 16.
    Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S.: On the security and performance of proof of work blockchains. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 3–16. ACM (2016)Google Scholar
  17. 17.
    Khalil, R., Gervais, A.: Nocust-a non-custodial 2nd-layer financial intermediary Google Scholar
  18. 18.
    Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.: OmniLedger: a secure, scale-out, decentralized ledger via sharding. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 583–598. IEEE (2018)Google Scholar
  19. 19.
    ScaleSphere Foundation Ltd.: Celer network: bring internet scale to every blockchain. Accessed 08 Sept 2018
  20. 20.
    Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure sharding protocol for open blockchains. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 17–30. ACM (2016)Google Scholar
  21. 21.
    McCorry, P., Bakshi, S., Bentov, I., Miller, A., Meiklejohn, S.: Pisa: arbitration outsourcing for state channels. IACR Cryptology ePrint Archive, 2018:582 (2018)Google Scholar
  22. 22.
    Miller, A., Bentov, I., Kumaresan, R., McCorry, P.: Sprites: payment channels that go faster than lightning. CoRR abs/1702.05812 (2017)Google Scholar
  23. 23.
    Joseph P., Buterin, V.: Plasma: scalable autonomous smart contracts. White paper (2017)Google Scholar
  24. 24.
    Poon, J., Dryja, T.: The Bitcoin lightning network: scalable off-chain instant payments. Draft version 0.5, 9:14 (2016)Google Scholar
  25. 25.
  26. 26.
    Sompolinsky, Y., Lewenberg, Y., Zohar, A.: SPECTRE: a fast and scalable cryptocurrency protocol. IACR Cryptology ePrint Archive, 2016:1159 (2016)Google Scholar
  27. 27.
    Sompolinsky, Y., Zohar, A.: Secure high-rate transaction processing in Bitcoin. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 507–527. Springer, Heidelberg (2015). Scholar
  28. 28.
    Spilman, J.: [Bitcoin-development] anti Dos for tx replacement. Accessed 08 Sept 2018

Copyright information

© International Financial Cryptography Association 2020

Authors and Affiliations

  • Patrick McCorry
    • 1
    Email author
  • Chris Buckland
    • 1
  • Surya Bakshi
    • 2
  • Karl Wüst
    • 3
  • Andrew Miller
    • 2
  1. 1.King’s College LondonLondonUK
  2. 2.University of Illinois at Urbana ChampaignChampaignUSA
  3. 3.ETH ZurichZurichSwitzerland

Personalised recommendations