Proof-of-Work Sidechains

  • Aggelos Kiayias
  • Dionysis ZindrosEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11599)


During the last decade, the blockchain space has exploded with a plethora of new cryptocurrencies, covering a wide array of different features, performance and security characteristics. Nevertheless, each of these coins functions in a stand-alone manner, independently. Sidechains have been envisioned as a mechanism to allow blockchains to communicate with one another and, among other applications, allow the transfer of value from one chain to another, but so far there have been no decentralized constructions. In this paper, we put forth the first side chains construction that allows communication between proof-of-work blockchains without trusted intermediaries. Our construction is generic in that it allows the passing of any information between blockchains. Using this construction, two blockchains can be connected in a “two-way peg” in which an asset can be transferred from one chain to another and back. We pinpoint the features needed for two chains to communicate: On the source side, a proof-of-work blockchain that has been interlinked, potentially with a velvet fork; on the destination side, a blockchain with smart contract support. We put forth the smart contracts needed to implement these sidechains and explain them in detail. In the heart of our construction, we use a recently introduced cryptographic primitive, Non-Interactive Proofs of Proof-of-Work (NIPoPoWs).


  1. 1.
    Back, A., et al.: Enabling blockchain innovations with pegged sidechains (2014).
  2. 2.
    Buchman, E.: Tendermint: Byzantine fault tolerance in the age of blockchains. Ph.D. thesis (2016)Google Scholar
  3. 3.
    Buterin, V., et al.: A next-generation smart contract and decentralized application platform. White paper (2014)Google Scholar
  4. 4.
    Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg (1993). Scholar
  5. 5.
    Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). Updated version at Scholar
  6. 6.
    Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains of variable difficulty. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 291–323. Springer, Cham (2017). Scholar
  7. 7.
    The Interledger Payments Community Group: Interledger protocol v4.
  8. 8.
    Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s peer-to-peer network. Cryptology ePrint Archive, Report 2015/263 (2015).
  9. 9.
    Hosp, J., Hoenisch, T., Kittiwongsunthorn, P.: COMIT: cryptographically-secure off-chain multi-asset instant transaction network., 2017
  10. 10.
    Khalil, R., Gervais, A.: Nocust-a non-custodial 2nd-layer financial intermediary. Technical report, Cryptology ePrint Archive, Report 2018/642 (2018).
  11. 11.
    Kiayias, A., Lamprou, N., Stouka, A.-P.: Proofs of proofs of work with sublinear complexity. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 61–78. Springer, Heidelberg (2016). Scholar
  12. 12.
    Kiayias, A., Miller, A., Zindros, D.: Non-interactive proofs of proof-of-work (2017)Google Scholar
  13. 13.
    Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)Google Scholar
  14. 14.
    Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asynchronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). Scholar
  15. 15.
    Poon, J., Buterin, V.: Plasma: scalable autonomous smart contracts. White paper (2017)Google Scholar
  16. 16.
    Inc Smart Contract Solutions: Openzeppelin crowdsale contract (2017).
  17. 17.
    Vogelsteller, F., Buterin, V.: Erc 20 token standard (2015).
  18. 18.
    Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper 151, 1–32 (2014)Google Scholar
  19. 19.
    Wood, G.: Polkadot: vision for a heterogeneous multi-chain framework (2016)Google Scholar
  20. 20.
    Karl, W., Arthur, G.: Ethereum eclipse attacks. Technical report, ETH Zurich (2016)Google Scholar
  21. 21.
    Zamyatin, A., Harz, D., Lind, J., Panayiotou, P., Arthur, G., Knottenbelt, W.J.: Xclaim: interoperability with cryptocurrency-backed tokens Google Scholar
  22. 22.
    Zamyatin, A., Stifter, N., Judmayer, A., Schindler, P., Weippl, E., Knottenbelt, W.J.: A wild velvet fork appears! Inclusive blockchain protocol changes in practice. In: Zohar, A., et al. (eds.) FC 2018. LNCS, vol. 10958, pp. 31–42. Springer, Heidelberg (2019). Scholar
  23. 23.
    Zhang, F., Cecchetti, E., Croman, K., Juels, A., Shi, E.: Town crier: an authenticated data feed for smart contracts. In: Edgar, R.W, Stefan, K., Christopher, K., Andrew C.M., Shai, H. (eds.) ACM CCS 2016, pp. 270–282. ACM Press (2016)Google Scholar

Copyright information

© International Financial Cryptography Association 2020

Authors and Affiliations

  1. 1.University of EdinburghEdinburghUK
  2. 2.National and Kapodistrian University of AthensAthensGreece
  3. 3.IOHKHong KongChina

Personalised recommendations