Advertisement

Short Paper: Coercion-Resistant Voting in Linear Time via Fully Homomorphic Encryption

Towards a Quantum-Safe Scheme
  • Peter B. RønneEmail author
  • Arash Atashpendar
  • Kristian Gjøsteen
  • Peter Y. A. Ryan
Conference paper
  • 38 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11599)

Abstract

We present an approach for performing the tallying work in the coercion-resistant JCJ voting protocol, introduced by Juels, Catalano, and Jakobsson, in linear time using fully homomorphic encryption (FHE). The suggested enhancement also paves the path towards making JCJ quantum-resistant, while leaving the underlying structure of JCJ intact. The pairwise comparison-based approach of JCJ using plaintext equivalence tests leads to a quadratic blow-up in the number of votes, which makes the tallying process rather impractical in realistic settings with a large number of voters. We show how the removal of invalid votes can be done in linear time via a solution based on recent advances in various FHE primitives such as hashing, zero-knowledge proofs of correct decryption, verifiable shuffles and threshold FHE. We conclude by discussing some of the advantages and challenges resulting from our proposal, followed by an outline of future work and possible lines of attack.

Notes

Acknowledgments

The authors acknowledge support from the Luxembourg National Research Fund (FNR) and the Research Council of Norway for the joint project SURCVS. The project was also supported by the FNR INTER-VoteVerif, the FNR CORE project Q-CoDe, and the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 779391 (FutureTPM).

References

  1. 1.
    Adida, B.: Helios: web-based open-audit voting. In: USENIX Security Symposium, vol. 17, pp. 335–348 (2008)Google Scholar
  2. 2.
    Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 430–454. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46800-5_17CrossRefGoogle Scholar
  3. 3.
    Araújo, R., Barki, A., Brunet, S., Traoré, J.: Remote electronic voting can be efficient, verifiable and coercion-resistant. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 224–232. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53357-4_15CrossRefGoogle Scholar
  4. 4.
    Araújo, R., Foulle, S., Traoré, J.: A practical and secure coercion-resistant scheme for remote elections. In: Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2008)Google Scholar
  5. 5.
    Araújo, R., Ben Rajeb, N., Robbana, R., Traoré, J., Youssfi, S.: Towards practical and secure coercion-resistant electronic elections. In: Heng, S.-H., Wright, R.N., Goi, B.-M. (eds.) CANS 2010. LNCS, vol. 6467, pp. 278–297. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-17619-7_20CrossRefGoogle Scholar
  6. 6.
    Boneh, D., et al.: Threshold cryptosystems from threshold fully homomorphic encryption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 565–596. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-96884-1_19CrossRefGoogle Scholar
  7. 7.
    Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. ACM Trans. Comput. Theory 6(3), 13 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Carr, C., Costache, A., Davies, G.T., Gjøsteen, K., Strand, M.: Zero-knowledge proof of decryption for FHE ciphertexts. IACR Cryptology ePrint Archive 2018, p. 26 (2018). http://eprint.iacr.org/2018/026
  9. 9.
    Catalano, D., Marcedone, A., Puglisi, O.: Authenticating computation on groups: new homomorphic primitives and applications. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 193–212. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45608-8_11CrossRefGoogle Scholar
  10. 10.
    Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a secure voting system. In: IEEE Symposium on Security and Privacy, pp. 354–368. IEEE (2008)Google Scholar
  11. 11.
    Cortier, V., Galindo, D., Küsters, R., Mueller, J., Truderung, T.: SoK: verifiability notions for e-voting protocols. In: 2016 IEEE Symposium on Security and Privacy (SP), pp. 779–798. IEEE (2016)Google Scholar
  12. 12.
    Delaune, S., Kremer, S., Ryan, M.: Coercion-resistance and receipt-freeness in electronic voting. In: 19th IEEE Computer Security Foundations Workshop, p. 12. IEEE (2006)Google Scholar
  13. 13.
    Fiore, D., Gennaro, R., Pastro, V.: Efficiently verifiable computation on encrypted data. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pp. 844–855. ACM (2014)Google Scholar
  14. 14.
    Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale elections. In: Seberry, J., Zheng, Y. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 244–251. Springer, Heidelberg (1993).  https://doi.org/10.1007/3-540-57220-1_66CrossRefGoogle Scholar
  15. 15.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the 41st Annual ACM Symposium on Symposium on theory of Computing-STOC\(\backslash \)2009, pp. 169–169. ACM Press (2009)Google Scholar
  16. 16.
    Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_49CrossRefGoogle Scholar
  17. 17.
    Gjøsteen, K., Strand, M.: A roadmap to fully homomorphic elections: stronger security, better verifiability. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 404–418. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70278-0_25CrossRefGoogle Scholar
  18. 18.
    Grontas, P., Pagourtzis, A., Zacharakis, A., Zhang, B.: Towards everlasting privacy and efficient coercion resistance in remote electronic voting. IACR Cryptology ePrint Archive 2018, p. 215 (2018)Google Scholar
  19. 19.
    Jakobsson, M., Juels, A.: Mix and match: secure function evaluation via ciphertexts. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 162–177. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44448-3_13CrossRefGoogle Scholar
  20. 20.
    Jao, D., Soukharev, V.: Isogeny-based quantum-resistant undeniable signatures. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 160–179. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11659-4_10CrossRefzbMATHGoogle Scholar
  21. 21.
    Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In: Proceedings of the 2005 ACM Workshop on Privacy in the Electronic Society, pp. 61–70. ACM (2005)Google Scholar
  22. 22.
    Küsters, R., Truderung, T., Vogt, A.: A game-based definition of coercion resistance and its applications 1. J. Comput. Secur. 20(6), 709–764 (2012)CrossRefGoogle Scholar
  23. 23.
    Luo, F., Wang, K.: Verifiable decryption for fully homomorphic encryption. In: Chen, L., Manulis, M., Schneider, S. (eds.) ISC 2018. LNCS, vol. 11060, pp. 347–365. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-99136-8_19CrossRefGoogle Scholar
  24. 24.
    Roenne, P.B.: JCJ with improved verifiability guarantees. In: The International Conference on Electronic Voting E-Vote-ID 2016 (2016)Google Scholar
  25. 25.
    Smith, D.: New cryptographic voting schemes with best-known theoretical properties. In: Workshop on Frontiers in Electronic Elections (2005)Google Scholar
  26. 26.
    Spycher, O., Koenig, R., Haenni, R., Schläpfer, M.: A new approach towards coercion-resistant remote e-voting in linear time. In: Danezis, G. (ed.) FC 2011. LNCS, vol. 7035, pp. 182–189. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-27576-0_15CrossRefGoogle Scholar
  27. 27.
    Strand, M.: A verifiable shuffle for the GSW cryptosystem. IACR Cryptology ePrint Archive 2018, p. 27 (2018). http://eprint.iacr.org/2018/027
  28. 28.
    Sun, X., Tian, H., Wang, Y.: Toward quantum-resistant strong designated verifier signature from isogenies. In: 2012 4th International Conference on Intelligent Networking and Collaborative Systems (INCoS), pp. 292–296. IEEE (2012)Google Scholar
  29. 29.
    Weber, S.G.: Coercion-Resistant Cryptographic Voting: Implementing Free and Secret Electronic Elections. VDM Publishing, Saarbrücken (2008)Google Scholar
  30. 30.
    Weber, S.G., Araujo, R., Buchmann, J.: On coercion-resistant electronic elections with linear work. In: The Second International Conference on Availability, Reliability and Security, ARES 2007, pp. 908–916. IEEE (2007)Google Scholar

Copyright information

© International Financial Cryptography Association 2020

Authors and Affiliations

  • Peter B. Rønne
    • 1
    Email author
  • Arash Atashpendar
    • 1
  • Kristian Gjøsteen
    • 2
  • Peter Y. A. Ryan
    • 1
  1. 1.SnT, University of LuxembourgLuxembourg CityLuxembourg
  2. 2.Norwegian University of Science and Technology, NTNUTrondheimNorway

Personalised recommendations