Advertisement

Urban Growth and Land Use Simulation Using SLEUTH Model for Adama City, Ethiopia

  • Yanit MekonnenEmail author
  • S. K. Ghosh
Conference paper
  • 30 Downloads
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 308)

Abstract

Urban Growth Model has been adapted to study the urban growth and its impact on the surrounding environment. Here a cellular automaton model known as SLEUTH has been standardize using multi historical digital maps of areas to forecast the future coverage of an urban and land use. The model will use the best fit growth rule parameters by narrowing coefficients throughout calibration mode and passed down to predict future urban growth pattern, generate various probability map and LULC map. As per SLEUTH modelling, the generated future urban growth pattern prediction of Adama city shows that nearly 42.89% urban rise in 2020, 46.85% in 2030, 49.15% in 2040 and 50.49% in 2050. Generally, the expansion of the urban growth pattern is exhibiting new spreading centre which are indication of a city to expand also the result present useful information for future urban planning and improvement.

Keywords

Urban growth GIS and remote sensing SLEUTH 

References

  1. Bhatta, B.: Urban Growth Analysis and Remote Sensing: A Case Study of Kolkata, India 1980–2010. Springer, Dordrecht (2012).  https://doi.org/10.1007/978-94-007-4698-5CrossRefGoogle Scholar
  2. Bhatta, B., Saraswati, S., Bandyopadhyay, D.: Quantifying the degree-of-freedom, degree-of-sprawl, and degree-of-goodness of urban growth from remote sensing data. Appl. Geogr. 30(1), 96–111 (2010)CrossRefGoogle Scholar
  3. Chaudhuri, G., Clarke, K.C.: How does land use policy modify urban growth? A case study of the Italo-Slovenian border. J. Land Use Sci. 8(4), 443–465 (2013)CrossRefGoogle Scholar
  4. Clarke, K.C.: Mapping and modelling land use change: an application of the SLEUTH model. In: Pettit, C., Cartwright, W., Bishop, I., Lowell, K., Pullar, D., Duncan, D. (eds.) Landscape Analysis and Visualization, pp. 353–366. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-69168-6_17CrossRefGoogle Scholar
  5. Clarke, K.C., Gaydos, L.J.: Loose-coupling a cellular automaton model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore. Int. J. Geogr. Inf. Sci. 12(7), 699–714 (1998)CrossRefGoogle Scholar
  6. Clarke, K.C., Gazulis, N., Dietzel, C., Goldstein, N.C.: A decade of SLEUTH modeling: lessons learned from applications of a cellular automaton land use change model. Classics IJGIS Twenty Years Int. J. Geogr. Inf. Sci. Syst., 413–427 (2007) Google Scholar
  7. Clarke, K.C., Hoppen, S., Gaydos, L.: A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environ. Plann. B Plann. Des. 24(2), 247–261 (1997)CrossRefGoogle Scholar
  8. Dietzel, C., Clarke, K.C.: Toward optimal calibration of the SLEUTH land use change model. Trans. GIS 11(1), 29–45 (2007)CrossRefGoogle Scholar
  9. Gazulis, N., Clarke, K.C.: Exploring the DNA of our regions: classification of outputs from the SLEUTH model. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 462–471. Springer, Heidelberg (2006).  https://doi.org/10.1007/11861201_54CrossRefGoogle Scholar
  10. Harris, B.: New tools for planning. J. Am. Inst. Planners 31(2), 90–95 (1965)CrossRefGoogle Scholar
  11. Lambin, E.F., Geist, H.J. (eds.): Land-Use and Land-Cover Change: Local Processes and Global Impacts. Springer, Heidelberg (2008).  https://doi.org/10.1007/3-540-32202-7CrossRefGoogle Scholar
  12. Lavalle, C.: Towards an Urban Atlas: Assessment of Spatial Data on 25 European Cities and Urban Areas, vol. 30. European Environment Agency, Copenhagen (2002)Google Scholar
  13. Sietchiping, R.: A geographic information systems and cellular automata-based model of informal settlement growth (Doctoral dissertation) (2004)Google Scholar
  14. Silva, E.A., Clarke, K.C.: Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal. Comput. Environ. Urban Syst. 26(6), 525–552 (2002)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020

Authors and Affiliations

  1. 1.Department of ArchitectureDilla University, SNNPRDillaEthiopia
  2. 2.Department of Civil EngineeringIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations