Advertisement

Antioxidative Properties of Usnic Acid and Its Interaction with Tyrosyl-DNA Phosphodiesterase

  • Jelena ĐorovićEmail author
  • Zoran Marković
Conference paper
  • 27 Downloads
Part of the Learning and Analytics in Intelligent Systems book series (LAIS, volume 11)

Abstract

In this study are investigated antioxidative properties of usnic acid, as well as its interaction with tyrosyl-DNA phosphodiesterase 1 (TDP1). Antioxidative properties are estimated on the basis of the Density Functional Theory (DFT) calculations. For this propose, full optimization of parent molecule of usnic acid and corresponding radical cation, radicals and anions are done at M05-2X/6-311++G(d,p) level of theory. The CPCM solvation model was applied to approximate the influence of polar and non-polar solvent. Obtained results indicate single electron transfer followed by the proton transfer as thermodynamically the most unfavorable mechanism of antioxidant action. The lowest values are achieved for proton affinity, and that pointed out sequential proton loss electron transfer mechanism as dominant antioxidative mechanism. The second part of this study is the examination of the interaction between usnic acid and TDP1, which is an enzyme responsible for repairing the protein-DNA bond in the cells. In order to perform molecular docking simulation AutoDock 4.0 software is used. Analysis of obtained data specifies interactions with Asn162, Leu168, Gly182, Tyr167 and Ser485 as the most significant. Further, the molecular dynamic simulation is performed using NAMD software. It is noticed that similar interactions are obtained.

Notes

Acknowledgments

The authors acknowledge support of the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grants no. 174028 and 172015).

References

  1. 1.
    Halliwell, B., Gutteridge, J.M.C.: Free Radicals in Biology and Medicine, 3rd edn. Clarendon Press, Oxford (1999)Google Scholar
  2. 2.
    Halliwell, B.: Free radicals and other reactive species in disease. In: Encyclopedia of Life Sciences. Nature Publishing Group (2001)Google Scholar
  3. 3.
    Rose, R.C., Bode, A.M.: Biology of free radical scavengers: an evaluation of ascorbate. FASEB J. 7(12), 1135–1142 (1993)CrossRefGoogle Scholar
  4. 4.
    Galano, A.: Free radicals induced oxidative stress at a molecular level: the current status, challenges and perspectives of computational chemistry based protocols. J. Mex. Chem. Soc. 59(4), 231–262 (2015)Google Scholar
  5. 5.
    Reyim, M.: Adiljan; Abdulla, A. China Brew. 11, 122–124 (2010)Google Scholar
  6. 6.
    Ingolfsdottir, K.: Usnic acid. Phytochemistry 61(7), 729–736 (2002)CrossRefGoogle Scholar
  7. 7.
    Araújo, A.A.S., De Melo, M.G.D., Rabelo, T.K., Nunes, P.S., Santos, S.L., Serafini, M.R., Santos, M.R.V., Quintans-Júnior, L.J., Gelain, D.P.: Review of the biological properties and toxicity of usnic acid. Nat. Prod. Res. 29(23), 2167–2180 (2015)CrossRefGoogle Scholar
  8. 8.
    Guo, L., Shi, Q., Fang, J.L., Mei, N., Ali, A.A., Lewis, S.M., Leakey, J.E., Frankos, V.H.: Review of usnic acid and Usnea barbata toxicity. J. Environ. Sci. Health Part C 26(4), 317–338 (2008)CrossRefGoogle Scholar
  9. 9.
    Shrestha, G., St. Clair, L.L.: Lichens: a promising source of antibiotic and anticancer drugs. Phytochem. Rev. 12(1), 229–244 (2013)CrossRefGoogle Scholar
  10. 10.
    Mitrović, T., Stamenković, S., Cvetković, V., Tošić, S., Stanković, M., Radojević, I., Stefanović, O., Čomić, L., Đačić, D., Ćurčić, M., Marković, S.: Antioxidant, antimicrobial and antiproliferative activities of five lichen species. Int. J. Mol. Sci. 12(8), 5428–5448 (2011)CrossRefGoogle Scholar
  11. 11.
    Bačkorová, M., Bačkor, M., Mikeš, J., Jendželovský, R., Fedoročko, P.: Lichen secondary metabolites are responsible for induction of apoptosis in HT-29 and A2780 human cancer cell lines. Toxicol. In Vitro 26(3), 462–468 (2012)CrossRefGoogle Scholar
  12. 12.
    Álvarez-Diduk, R., Galano, A.: Adrenaline and noradrenaline: protectors against oxidative stress or molecular targets? J. Phys. Chem. B 119(8), 3479–3491 (2015)CrossRefGoogle Scholar
  13. 13.
    Petrović, Z.D., Đorović, J., Simijonović, D., Petrović, V.P., Marković, Z.: Experimental and theoretical study of antioxidative properties of some salicylaldehyde and vanillic Schiff bases. RSC Adv. 5(31), 24094–24100 (2015)CrossRefGoogle Scholar
  14. 14.
    Alberto, M.E., Russo, N., Grand, A., Galano, A.: A physicochemical examination of the free radical scavenging activity of Trolox: mechanism, kinetics and influence of the environment. Phys. Chem. Chem. Phys. 15(13), 4642–4650 (2013)CrossRefGoogle Scholar
  15. 15.
    Galano, A., Mazzone, G., Alvarez-Diduk, R., Marino, T., Alvarez-Idaboy, R., Russo, N.: Food antioxidants: chemical insights at the molecular level. Ann. Rev. Food Sci. Technol. 7, 335–352 (2016)CrossRefGoogle Scholar
  16. 16.
    Rimarčík, J., Lukeš, V., Klein, E., Ilčin, M.: Study of the solvent effect on the enthalpies of homolytic and heterolytic N-H bond cleavage in p-phenylenediamine and tetracyano-p-phenylenediamine. J. Mol. Struct. (Thoechem) 952(1–3), 25–30 (2010)CrossRefGoogle Scholar
  17. 17.
    Zhang, H.Y., Ji, H.F.: How vitamin E scavenges DPPH radicals in polar protic media. New J. Chem. 30(4), 503–504 (2006)CrossRefGoogle Scholar
  18. 18.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.J., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, A.D., Rabuck, K.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Baboul, A.G., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Andres, J.L., Gonzalez, C., Head-Gordon, M., Replogle, E.S., Pople, J.A.: Gaussian 09, Revision B.01. Gaussian Inc., Wallingford (2009)Google Scholar
  19. 19.
    Zhao, Y., Truhlar, D.G.: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoret. Chem. Acc. 120(1), 215–241 (2008)CrossRefGoogle Scholar
  20. 20.
    Marković, Z.S., Marković, J.M.D., Doličanin, Ć.B.: Mechanistic pathways for the reaction of quercetin with hydroperoxy radical. Theoret. Chem. Acc. 127(1–2), 69–80 (2010)CrossRefGoogle Scholar
  21. 21.
    Marković, Z., Milenković, D., Đorović, J., Marković, J.M.D., Stepanić, V., Lučić, B., Amić, D.: Free radical scavenging activity of morin 2′-O− phenoxide anion. Food Chem. 135(3), 2070–2077 (2012)CrossRefGoogle Scholar
  22. 22.
    Zavala-Oseguera, C., Alvarez-Idaboy, J.R., Merino, G., Galano, A.: OH radical gas phase reactions with aliphatic ethers: a variational transition State Theory Study. J. Phys. Chem. A 113(50), 13913–13920 (2009)CrossRefGoogle Scholar
  23. 23.
    Takano, Y., Houk, K.N.: Benchmarking the conductor-like polarizable continuum model (CPCM) for aqueous solvation free energies of neutral and ionic organic molecules. J. Chem. Theory Comput. 1(1), 70–77 (2005)CrossRefGoogle Scholar
  24. 24.
    Tošović, J., Marković, S., Milenković, D., Marković, Z.: Solvation enthalpies and Gibbs energies of the proton and electron – influence of solvation models. J. Serb. Soc. Comput. Mech. 10(2), 66–76 (2016)CrossRefGoogle Scholar
  25. 25.
    Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J.: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30(16), 2785–2791 (2009)CrossRefGoogle Scholar
  26. 26.
    Davies, D.R., Interthal, H., Champoux, J.J., Hol, W.G.: The crystal structure of human tyrosyl-DNA phosphodiesterase, TDP1. Structure 10(2), 237–248 (2002)CrossRefGoogle Scholar
  27. 27.
    Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., Schulten, K.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26(16), 1781–1802 (2005)CrossRefGoogle Scholar
  28. 28.
    Galasso, V.: Probing the molecular and electronic structure of the lichen metabolite usnic acid: a DFT study. Chem. Phys. 374(1–3), 138–145 (2010)CrossRefGoogle Scholar
  29. 29.
    Hussein, M.A.: A convenient mechanism for the free radical scavenging activity of resveratrol. Int. J. Phytomedicine 3(4), 459–469 (2011)MathSciNetGoogle Scholar
  30. 30.
    Knight, J.A.: Review: free radicals, antioxidants, and the immune system. Ann. Clin. Lab. Sci. 30(2), 145–158 (2000)Google Scholar
  31. 31.
    Cooper, G.M.: The development and causes of cancer. In: The Cell: A Molecular Approach, 2nd edn., Boston University, Sunderland, MA. Sinauer Associates (2000)Google Scholar
  32. 32.
    Takagi, M., Ueda, J.Y., Hwang, J.H., Hashimoto, J., Izumikawa, M., Murakami, H., Sekido, Y., Shin-ya, K.: Tyrosyl-DNA phosphodiesterase 1 inhibitor from an anamorphic fungus. J. Nat. Prod. 75(4), 764–767 (2012)CrossRefGoogle Scholar
  33. 33.
    Antony, S., Marchand, C., Stephen, A.G., Thibaut, L., Agama, K.K., Fisher, R.J., Pommier, Y.: Novel high-throughput electrochemiluminescent assay for identification of human tyrosyl-DNA phosphodiesterase (TDP1) inhibitors and characterization of furamidine (NSC 305831) as an inhibitor of TDP1. Nucleic Acids Res. 35(13), 4474–4484 (2007)CrossRefGoogle Scholar
  34. 34.
    Gushchina, V., Nilov, D.K., Zakharenko, A.L., Lavrik, O.I., Švedas, V.K.: Structure modeling of human tyrosyldna phosphodiesterase 1 and screening for its inhibitors. Acta Naturae 9(2(33)), 59–66 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Bioengineering Research and Development Center - BioIRCKragujevacRepublic of Serbia
  2. 2.Department of Science, Institute for Information TechnologiesUniversity of KragujevacKragujevacRepublic of Serbia

Personalised recommendations