Advertisement

Application of Composite Smeared Finite Element Model in Drug Delivery Inside Organs

  • Vladimir Simic
  • Miljan Milosevic
  • Arturas Ziemys
  • Milos KojicEmail author
Conference paper
  • 26 Downloads
Part of the Learning and Analytics in Intelligent Systems book series (LAIS, volume 11)

Abstract

We here implement the smeared field finite element methodology, formulated by the last listed author, which is presented in numerous of recent publications. This methodology enables modeling physical fields in biological systems in a simple way, which otherwise, by detailed representation of each biological constituents (capillaries, cell membranes, cell interior, etc.), would not be practical to use. Here we summarize the basic concept of the smeared modeling by describing briefly formulation of a composite smeared finite element (CSFE). Besides the standard FE representation of continuum fields of molecular transport, 1D transport is included in a continuum form using the appropriate transport tensors. Physical fields are coupled by the connectivity elements at each node, representing transport properties of the walls separating the domains. In this paper, methodology is applied to determine concentration field within liver of a mouse, generated from images, containing a tumor. Also, evolution of drug concentration within tumor is presented, which is important for improvement of cancer therapy.

Notes

Acknowledgments

The authors acknowledge support from the City of Kragujevac, Serbia.

Funding

This work is supported by the SILICOFCM project that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 777204. This research was also funded by Ministry of Education and Science of Serbia, grants OI 174028 and III 41007.

References

  1. 1.
    Kojic, M., Filipovic, N., Stojanovic, B., Kojic, N.: Computer Modeling in Bioengineering - Theoretical Background, Examples and Software. Wiley, Chichester (2008)CrossRefGoogle Scholar
  2. 2.
    Less, J.R., Skalak, T.C., Sevick, E.M., Jain, R.K.: Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions. Cancer Res. 51, 265–273 (1991)Google Scholar
  3. 3.
    Roberts, W.G., Palade, G.E.: Neovasculature induced by vascular endothelial growth factor is fenestrated. Cancer Res. 57, 765–772 (1997)Google Scholar
  4. 4.
    Sevick, E.M., Jain, R.K.: Geometric resistance to blood flow in solid tumors perfused ex vivo: effects of tumor size and perfusion pressure. Cancer Res. 49, 3506–3512 (1989)Google Scholar
  5. 5.
    Sevick, E.M., Jain, R.K.: Viscous resistance to blood flow in solid tumors: effect of hematocrit on intratumor blood viscosity. Cancer Res. 49, 3513–3519 (1989)Google Scholar
  6. 6.
    Sevick, E.M., Jain, R.K.: Effect of red blood cell rigidity on tumor blood flow: increase in viscous resistance during hyperglycemia. Cancer Res. 51(51), 2727–2730 (1991)Google Scholar
  7. 7.
    Jain, R.: Determinants of tumor blood flow: a review. Cancer Res. 48, 2641–2658 (1988)Google Scholar
  8. 8.
    Rangamani, P., Iyengar, R.: Modelling spatio-temporal interactions within the cell. J. Biosci. 32, 157–167 (2007)CrossRefGoogle Scholar
  9. 9.
    Lipowsky, H.H., Zweifach, B.W.: Network analysis of microcirculation of cat mesentery. Microvasc. Res. 7, 73–83 (1974)CrossRefGoogle Scholar
  10. 10.
    Kojic, M., Milosevic, M., Simic, V., Ferrari, M.: A 1D pipe finite element with rigid and deformable walls. J. Serbian. Soc. Comput. Mech. 8, 38–53 (2014)CrossRefGoogle Scholar
  11. 11.
    Ziemys, A., Kojic, M., Milosevic, M., Ferrari, M.: Interfacial effects on nanoconfined diffusive mass transport regimes. Phys. Rev. Lett. 108, 236102 (2012)CrossRefGoogle Scholar
  12. 12.
    Kojic, M., Milosevic, M., Kojic, N., Ferrari, M., Ziemys, A.: On diffusion in nanospace. J. Serbian. Soc. Comput. Mechanics 5, 84–109 (2011)Google Scholar
  13. 13.
    Kojic, M., Milosevic, M., Kojic, N., lsailovic, V., Petrovic, D., Filipovic, N., Ferrari, M., Ziemys, A.: Transport phenomena: computational models for convective and diffusive transport in capillaries and tissue. In: De, S., Hwang, W., Kuhl, E. (eds.) Multiscale Modeling in Biomechanics and Mechanobiology, pp. 131–156. Springer, London (2015)CrossRefGoogle Scholar
  14. 14.
    Kojic, M., Ziemys, A., Milosevic, M., Isailovic, V., Kojic, N., Rosic, M., Filipovic, N., Ferrari, M.: Transport in biological systems. J. Serbian. Soc. Comput. Mech. 5, 101–128 (2011)Google Scholar
  15. 15.
    Kojic, M., Milosevic, M., Kojic, N., Kim, K., Ferrari, M., Ziemys, A.: A multiscale MD–FE model of diffusion in composite media with internal surface interaction based on numerical homogenization procedure. Comput. Meth. Appl. Mech. Eng. 269, 123–138 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kojic, M., Milosevic, M., Simic, V., Koay, E.J., Fleming, J.B., Nizzero, S., Kojic, N., Ziemys, A., Ferrari, M.: A composite smeared finite element for mass transport in capillary systems and biological tissue. Comput. Meth. Appl. Mech. Eng. 324, 413–437 (2017).  https://doi.org/10.1016/j.cma.2017.06.019MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kojic, M., Milosevic, M., Simic, V., Koay, E.J., Kojic, N., Ziemys, A., Ferrari, M.: Extension of the composite smeared finite element (CSFE) to include lymphatic system in modeling mass transport in capillary systems and biological tissue. J. Serbian. Soc. Comput. Mech. 11(2), 108–120 (2017)CrossRefGoogle Scholar
  18. 18.
    Milosevic, M., Simic, V., Milicevic, B., Koay, E.J., Ferrari, M., Ziemys, A., Kojic, M.: Correction function for accuracy improvement of the composite smeared finite element for diffusive transport in biological tissue systems. Comput. Meth. Appl. Mech. Eng. 338, 97–116 (2018).  https://doi.org/10.1016/j.cma.2018.04.012. ISSN: 0045-7825MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kojic, M., Milosevic, M., Simic, V., Koay, E.J., Kojic, N., Ziemys, A., Ferrari, M.: Multiscale smeared finite element model for mass transport in biological tissue: from blood vessels to cells and cellular organelles. Comput. Biol. Med. 99, 7–23 (2018).  https://doi.org/10.1016/j.compbiomed.2018.05.022CrossRefGoogle Scholar
  20. 20.
    Kojic, Milos: Smeared concept as a general methodology in finite element modeling of physical fields and mechanical problems in composite media. J. Serbian. Soc. Comput. Mech. 12(2), 1–16 (2018)CrossRefGoogle Scholar
  21. 21.
    Kojic, M., Milosevic, M., Simic, V., Ziemys, A., Filipovic, N., Ferrari, M.: Smeared multiscale finite element model for electrophysiology and ionic transport in biological tissue. Comput. Biol. Med. 108, 288–304 (2019)CrossRefGoogle Scholar
  22. 22.
    Santagiuliana, R., Milosevic, M., Milicevic, B., Sciumè, G., Simic, V., Ziemys, A., Kojic, M., Schrefler, B.A.: Coupling tumor growth and bio distribution models. Biomed. Microdevices (2019).  https://doi.org/10.1007/s10544-019-0368-yCrossRefGoogle Scholar
  23. 23.
    Kojic, M., Milosevic, M., Simic, V., Milicevic, B., Geroski, V., Nizzero, S., Ziemys, A., Filipovic, N., Ferrari, M.: Smeared multiscale finite element models for mass transport and electrophysiology coupled to muscle mechanics. Front. Bioeng. Biotechnol. 7(381), 1–16 (2019).  https://doi.org/10.3389/fbioe.2019.00381. ISSN 2296-4185CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Vladimir Simic
    • 2
  • Miljan Milosevic
    • 2
    • 4
  • Arturas Ziemys
    • 1
  • Milos Kojic
    • 1
    • 2
    • 3
    Email author
  1. 1.The Department of NanomedicineHouston Methodist Research InstituteHoustonUSA
  2. 2.Bioengineering Research and Development Center BioIRC KragujevacKragujevacSerbia
  3. 3.Serbian Academy of Sciences and ArtsBelgradeSerbia
  4. 4.Belgrade Metropolitan UniversityBelgradeSerbia

Personalised recommendations