A Review Content Analysis Between Industry 4.0 and Sustainable Manufacturing

  • David Iubel de Oliveira PereiraEmail author
  • Edson Pinheiro de Lima
  • Carla Gonçalves Machado
  • Sérgio Eduardo Gouvêa da Costa
Conference paper
Part of the Lecture Notes on Multidisciplinary Industrial Engineering book series (LNMUINEN)


Manufacturing companies have been facing a dynamic environment due the Industry 4.0 and sustainable development phenomena and, consequently, a greatest attention from researchers has been attracted to investigate how the 4th Industrial Revolution interact or influence sustainable manufacturing. Therefore, the purpose of this paper is to investigate the academic progress regarding Industry 4.0 and Sustainable Manufacturing simultaneously, offering as the main result a review content analysis. More specifically, a bibliometric analysis provides a list of prominent journals and popular conferences and the summary of the main authors and their institutions. Moreover, a content analysis presents a semantic network, illustrating current research efforts and suggesting future research directions, identified by topics. In sum, the first topic suggests the need to explore and comprehend the interaction between the areas. The second topic brings the importance to analyse and understand requirements needed to successfully implement. The last topic shows the different ways to implement and assess the sustainable manufacturing in the context of Industry 4.0.


Industry 4.0 Sustainable manufacturing Review content analysis 



This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. Also wish to thank not only the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) through grant number 308137/2018-3, but also the VINNOVA (grant number 2018-01583) and Chalmers Production Area of Advance (AoA Production) for supporting the research project.


  1. 1.
    Beier, G., Niehoff, S., Xue, B.: More sustainability in industry through industrial Internet of Things? Appl. Sci. 8(2), 219-1–219-12 (2018)Google Scholar
  2. 2.
    Jovane, F., Yoshikawa, H., Alting, Boer, C.R., Westkamper, E., Williams, D., Tseng, M., Seliger, G., Paci, A.M.: The incoming global technological and industrial revolution towards competitive sustainable manufacturing. CIRP Annals 52(2), 641–659 (2008)Google Scholar
  3. 3.
    Müller, J.M., Kiel, D., Voigt, K.I.: What drives the implementation of Industry 4.0? The role of opportunities and challenges in the context of sustainability. Sustainability 10(1), 247-1–247-24 (2018)Google Scholar
  4. 4.
    Gabriel, M., Pessl, E.: Industry 4.0 and sustainability impacts: critical discussion of sustainability aspects with a special focus on future of work and ecological consequences. Ann. Faculty Eng. Hunedoara - Int. J. Eng. 14(2), 131–137 (2016)Google Scholar
  5. 5.
    Morrar, R., Arman, H., Mousa, S.: The fourth industrial revolution (Industry 4.0): a social innovation perspective. Technol. Innov. Manag. Rev. 7(11), 12–20 (2017)Google Scholar
  6. 6.
    Strandhagen, J.O., Vallandingham, L.R., Fragapane, G., Strandhagen, J.W., Stangeland, A.B.H., Sharma, N.: Logistics 4.0 and emerging sustainable business models. Adv. Manuf. 5(4), 359–369 (2017)Google Scholar
  7. 7.
    Duarte, S., Cruz-Machado, V.: Exploring linkages between lean and green supply chain and the Industry 4.0. In: Xu, J., Gen, M., Hajiyev, A., Cooke, F. (eds.) Proceedings of the 11th International Conference on Management Science and Engineering Management: ICMSEM 2017. LNMIE, pp. 1242–1252. Springer, Cham (2018)Google Scholar
  8. 8.
    Cerri, D., Terzi, S.: Proposal of a toolset for the improvement of industrial systems’ lifecycle sustainability through the utilization of ICT technologies. Comput. Ind. 81(1), 47–54 (2016)CrossRefGoogle Scholar
  9. 9.
    Lin, K.C., Shyu, J.Z., Ding, K.: A cross-strait comparison of innovation policy under Industry 4.0 and sustainability development transition. Sustainability 9(5), 786-1–786-17 (2017)Google Scholar
  10. 10.
    Ensslin, L., Lacerda, R., Tasca, J.: ProKnow-C, Knowledge Development Process–Constructivist: Processo técnico com patente de registro pendente junto ao INPI. Brasil (2010)Google Scholar
  11. 11.
    de Man, J.C., Strandhagen, J.O.: An Industry 4.0 research agenda for sustainable business models. Procedia CIRP 63(1), 721–726 (2017)Google Scholar
  12. 12.
    Kiel, D., Arnold, C., Colissi, M., Voigt, K.-I.: The impact of the industrial Internet of Things on established business models. In: Proceedings of the International Association for Management of Technology, IAMOT 2016, pp. 673–695. Press (2016)Google Scholar
  13. 13.
    Stock, T., Seliger, G.: Opportunities of sustainable manufacturing in Industry 4.0. Procedia CIRP 40(1), 536–544 (2016)Google Scholar
  14. 14.
    Waibel, M.W., Steenkamp, L.P., Moloko, N., Oosthuizen, G.A.: Investigating the effects of smart production systems on sustainability elements. Procedia Manuf. 8(1), 731–737 (2017)CrossRefGoogle Scholar
  15. 15.
    Zhang, Y., Ren, S., Liu, Y., Si, S.: A big data analytics architecture for cleaner manufacturing and maintenance processes of complex products. J. Clean. Prod. 142(2), 626–641 (2017)CrossRefGoogle Scholar
  16. 16.
    Saldaña, J.: The Coding Manual for Qualitative Researchers, p. 306. Sage, London (2013)Google Scholar
  17. 17.
    Blunck, E., Werthmann, H.: Industry 4.0 – an opportunity to realize sustainable manufacturing and its potential for a circular economy. In: Proceedings of the Dubrovnik International Economic Meeting, pp. 644–666. Press (2017)Google Scholar
  18. 18.
    Bogle, I.D.L.: A perspective on smart process manufacturing research challenges for process systems engineers. Engineering 3(2), 161–165 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kiel, D., Müller, J., Arnold, C.: Sustainable industrial value creation: benefits and challenges of Industry 4.0. Int. J. Innov. Manag. 21(8), 17400151-1–17400151-34 (2017)Google Scholar
  20. 20.
    Stark, R., Grosse, H., Beckmann-Dobrev, B., Kind, S.: INPIKO Collaboration: advanced technologies in life cycle engineering. Procedia CIRP 22(1), 3–14 (2014)Google Scholar
  21. 21.
    Angioletti, C.M., Sisca, F.G., Luglietti, R., Taisch, M., Rocca, R.: Additive Manufacturing as an opportunity for supporting sustainability through implementation of circular economies. In: Proceedings of the 21st Summer School Francesco Turco, pp. 25–30. Press (2016)Google Scholar
  22. 22.
    Beier, G., Niehoff, S., Ziems, T., Xue, B.: Sustainability aspects of a digitalized industry – a comparative study from China and Germany. Int. J. Pr. Eng. Man.-G.T. 4(2), 227–224 (2017)Google Scholar
  23. 23.
    Prause, G.: Sustainable business models and structures for Industry 4.0. J. Sec. Sustain. Issues 5(2), 37–48 (2015)Google Scholar
  24. 24.
    Prause, G., Atari, S.: On sustainable production networks for Industry 4.0. Entre. Sustain. Issues 4(4), 421–431 (2017)Google Scholar
  25. 25.
    Trentesaux, D., Borangiu, T., Thomas, A.: Emerging ICT concepts for smart, safe and sustainable industrial systems. Comput. Ind. 81(1), 1–10 (2016)CrossRefGoogle Scholar
  26. 26.
    Gerlitz, L.: Design management as a domain of smart and sustainable enterprise: business modelling for innovation and smart growth in Industry 4.0. ESI 3(3), 244–268 (2016)Google Scholar
  27. 27.
    Blümel, E.: Global challenges and innovative technologies geared toward new markets: prospects for virtual and augmented reality. Procedia. Comput. Sci. 25(1), 4–13 (2013)CrossRefGoogle Scholar
  28. 28.
    Schuh, G., Reuter, C., Hauptvogel, A.: Increasing collaboration productivity for sustainable production systems. Procedia CIRP 29(1), 191–196 (2015)CrossRefGoogle Scholar
  29. 29.
    Kenett, R.S., Zonnenshain, A., Fortuna, G.: A road map for applied data sciences supporting sustainability in advanced manufacturing: the information quality dimensions. Procedia Manuf. 21(1), 141–148 (2018)CrossRefGoogle Scholar
  30. 30.
    Herrmann, C., Schmidt, C., Kurle, D., Blume, S., Thiede, S.: Sustainability in manufacturing and factories of the future. Int. J. Pr. Eng. Man.-G. T. 1(4), 283–292 (2014)Google Scholar
  31. 31.
    Bernstein, W.Z., Subramaniyan, A.B., Brodsky, A., Garretson, I.C., Haapala, K.R., Libes, D., Morris, K.C., Pan, R., Prabhu, V., Sarkar, A., Raman, A.S., Wuh, Z.: Research directions for an open unit manufacturing process repository: a collaborative vision. Manuf. Lett. 15(part B), 71–75 (2018)Google Scholar
  32. 32.
    Frolov, V.G., Lobachevsky, N.I., Kovylkin, D.Y., Popova, J.A., Pavlova, A.A.: The main economic factors of sustainable manufacturing within the industrial policy concept of Industry 4.0. Acad. Strateg. Manag. J. 16(special issue 2), 1–11 (2017)Google Scholar
  33. 33.
    Bakkari, M., Khatory, A.: Industry 4.0: strategy for more sustainable industrial development in SMEs. In: Proceedings of the International Conference on Industrial Engineering and Operations Management, pp. 1693–1701. Press (2017)Google Scholar
  34. 34.
    Ferrera, E., Rossini, R., Baptista, A.J., Evans, S., Hovest, G.G., Holgado, M., Lezak, E., Lourenço, E.J., Masluszczak, Z., Schneider, A., Silva, E.J., Werner-Kytölä, O., Estrela, M.A.: Toward Industry 4.0: efficient and sustainable manufacturing leveraging MAESTRI total efficiency framework. In: Campana, G., Howlett, R., Setchi, R., Cimatti, B. (eds.) Sustainable Design and Manufacturing: SDM 2017. SIST, vol. 68, pp. 624–633. Springer, Cham (2017)Google Scholar
  35. 35.
    Lee, J.Y., Shin, S.J., Lee, Y.T., Libes, D.: Toward development of a testbed for sustainable manufacturing. CERA 23(1), 64–73 (2015)Google Scholar
  36. 36.
    Watanabe, E.H., da Silva, R.M., Junqueira, F., dos Santos Filho, D.J., Miyagi, P.E.: An emerging industrial business model considering sustainability evaluation and using cyber physical system technology and modelling techniques. IFAC-PapersOnLine 49(32), 135–140 (2016)CrossRefGoogle Scholar
  37. 37.
    Pinheiro de Lima, E., Gouvea da Costa, S.E., Angelis, J.J.: The strategic management of operations system performance. Int. J. Bus. Perform. Manag. 10(1), 108–132 (2008)Google Scholar
  38. 38.
    Kumar, A., Shankar, R., Thakur, L.S.: Model a big data driven sustainable manufacturing framework for condition-based maintenance prediction. J. Comput. Sci. 27(1), 428–439 (2017)Google Scholar
  39. 39.
    Syafrudin, M., Fitriyani, N., Li, D., Alfian, G., Rhee, J., Kang, Y.-S.: An open source-based real-time data processing architecture framework for manufacturing sustainability. Sustainability 9(11), 2139-1–2139-18 (2017)Google Scholar
  40. 40.
    Larreina, J., Gontarz, A., Giannoulis, C. Nguyen, V.K., Stavropoulos, P., Sinceri, B.: Smart manufacturing execution system (SMES): the possibilities of evaluating the sustainability of a production process. In: Proceedings of the 11th Global Conference on Sustainable Manufacturing, GCSM 2017, pp. 517–522. Press (2017)Google Scholar
  41. 41.
    Miranda, J., Pérez-Rodríguez, R., Borja, V., Wright, P.K., Molina, A.: Sensing, smart and sustainable product development reference framework. Int. J. Prod. Res. 57(14), 4391–4412 (2017)CrossRefGoogle Scholar
  42. 42.
    Severengiz, M., Seidel, J., Steingrímsson, J.G., Seliger, G.: Enhancing technological innovation with the implementation of a sustainable manufacturing community. Procedia CIRP 26(1), 52–57 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • David Iubel de Oliveira Pereira
    • 1
    Email author
  • Edson Pinheiro de Lima
    • 1
    • 2
  • Carla Gonçalves Machado
    • 3
  • Sérgio Eduardo Gouvêa da Costa
    • 1
    • 2
  1. 1.Pontifical Catholic University of ParanáCuritibaBrazil
  2. 2.Federal University of Technology - ParanáPato BrancoBrazil
  3. 3.Chalmers University of TechnologyGothenburgSweden

Personalised recommendations