Advertisement

Methodology for Assessing Digitalization Readiness and Maturity of Small and Medium-Sized Enterprises

  • Christoph SzedlakEmail author
  • Bert Leyendecker
  • Holger Reinemann
  • Patrick Pötters
Conference paper
  • 22 Downloads
Part of the Lecture Notes on Multidisciplinary Industrial Engineering book series (LNMUINEN)

Abstract

Digitalization is a major trend changing both, business and society. As a result, small and medium-sized enterprises (SMEs) are also facing the challenges of a digital transformation, which is less an evolutionary process, but rather a change that must be actively shaped. However, SMEs are subject to major uncertainties and substantial challenges with regard to this transformational process. This paper proposes an assessment methodology to support SMEs in creating a holistic view of digital maturity, serving a descriptive and prescriptive purpose. The developed methodologies support SME to align strategies and to identify specific fields of action and projects. In contrast to the widespread standardised online self-assessments, the designed QuickCheck Digitalization (QCD) is based on the objective results of a detailed investigation of the enterprise and its existing processes, carried out by external assessors.

Keywords

Digitalization Industry 4.0 Maturity model Change management 

References

  1. 1.
    Evans, N.: Mastering Digital Business: How Powerful Combinations of Disruptive Technologies are enabling the Next Wave of Digital Transformation. BSC Learning & Development, Swidon (2017)Google Scholar
  2. 2.
    Huber, D., Kaiser, T.: Wie das Interne der Dinge neue Geschäftsmodelle ermöglicht. HMD Prax. Wirtschaftsinformatik 52(5), 681–689 (2015)CrossRefGoogle Scholar
  3. 3.
    Pelletier, C., Cloutier, M.: Challenges of digital transformation in SMEs: exploration of IT-related perceptions in a service ecosystem. In: Proceedings of the 52nd Hawaii International Conference on System Sciences, pp. 4967–4976. HICSS (2019)Google Scholar
  4. 4.
    Fersht, P.: Accenture’s Intelligent Operations research: The Future Belongs to Intelligent Operations. HFS Research (2018)Google Scholar
  5. 5.
    Henriette, E., Mondher, F., Boughzala, I.: The shape of digital transformation: a systematic literature review. In: Proceedings of the 9th Mediterranean Conference on Information Systems, MCIS 2015, pp. 1–12. AIS (2015)Google Scholar
  6. 6.
    Bischoff, J.: Erschließen der Potenziale der Anwendung von “Industrie 4.0” im Mittelstand. Bundesministerium für Wirtschaft und Energie (BMWi), Mülheim (2015)Google Scholar
  7. 7.
    Bordia, R., Kronenberg, E., Neely, D.: Innovation’s OrgDNA. Booz Allen, Hamilton (2005)Google Scholar
  8. 8.
    Bullinger, H.-J., Gommel, M.: Erfolgsfaktor Mitarbeiter Motivation Kreativität – Innovation. Teubner, Stuttgart (1996)CrossRefGoogle Scholar
  9. 9.
    Banjongprasert, J.: An assessment of change-readiness capabilities and service innovation readiness and innovation performance: empirical evidence from MICE venues. Int. J. Econ. Manag. Eng. 11(1), 1–17 (2017)Google Scholar
  10. 10.
    Urbach, N., Röglinger, M.: Introduction to digitalization cases: how organizations rethink their business for the digital age. In: Urbach, N., Röglinger, M. (eds.) Digitalization Cases: How Organizations Rethink Their Business for the Digital Age, pp. 1–12. Springer, Cham (2019)CrossRefGoogle Scholar
  11. 11.
    Griffiths, M., Heinze, A., Fenton, A., Flechter, G.: Digital business evolution: lessons from a decade of KTP industry projects. In: Proceedings of the UK Academy for Information Systems Conference, pp. 1–9. AIS (2018)Google Scholar
  12. 12.
    Erol, S., Schuhmacher, A., Sihn, W.: Strategic guidance towards industry 4.0 - a three-stage process model. In: Proceedings of the International Conference on Competitive Manufacturing, COMA 2016, pp. 495–500. Press (2016)Google Scholar
  13. 13.
    Bley, K., Leyh C., Schäffer, T.: Digitization of German enterprises in the production sector – do they know how “digitized” they are? In: Proceedings of the 22nd Americas Conference on Information Systems, AMCIS 2016, pp. 1–10. Press (2016)Google Scholar
  14. 14.
    Viharos, Z.: Non-comparative, industry 4.0 readiness evaluation for manufacturing enterprises. In: Proceedings of the 15th IMEKO TC10 Workshop on Technical Diagnostics: Technical Diagnostics in Cyber-Physical Era, pp. 181–187. Press (2017)Google Scholar
  15. 15.
    Mittal, S., Romero, D., Wuest, T.: Towards a smart manufacturing maturity model for SMEs (SM3E). In: Moon, I., Lee, G., Park, J., Kiritsis, D., von Cieminski, G. (eds.) Advances in Production Management Systems – Smart Manufacturing for Industry 4.0: APMS 2018. IFIP-AICT, vol. 536, pp. 155–163. Springer, Cham (2018)CrossRefGoogle Scholar
  16. 16.
    Moeuf, A.: The industrial management of SMEs in the era of industry 4.0. Int. J. Prod. Res. 56(3), 1118–1136 (2018)CrossRefGoogle Scholar
  17. 17.
    European Commission: Commission Recommendation of 6 May 2003 concerning the definition of micro, small and medium-sized enterprises. https://eur-lex.europa.eu/eli/reco/2003/361/oj. Accessed 01 Apr 2019
  18. 18.
    Tihinenand, M., Kääriäinen, J.: The Industrial Internet in Finland: On Route to Success? VTT Technical Research Centre of Finland, Espoo (2016)Google Scholar
  19. 19.
    Anderssen, E., Jessen, S.: Project maturity in organizations. Int. J. Proj. Manag. 6(21), 457–461 (2003)CrossRefGoogle Scholar
  20. 20.
    Göklap, E., Sener, U., Eren, P.: Development of an assessment model for industry 4.0: industry 4.0-MM. In: Mas, A., Mesquida, A., O’Connor, R., Rout, T., Dorling, A. (eds.) Software Process Improvement and Capability Determination: SPICE 2017. CCIS, vol. 770, pp. 128–142. Springer, Cham (2017)Google Scholar
  21. 21.
    Wochinger, T.: Die Güte der Produktionslogistik reifegradorientiert bewerten. ZWV 105(3), 222–226 (2010)Google Scholar
  22. 22.
    Becker, J., Knackstedt, R., Pööbelbus, J.: Developing maturity models for IT management - a procedure model and its application. Bus. Inf. Syst. Eng. 1(3), 213–222 (2009)CrossRefGoogle Scholar
  23. 23.
    Rögliner, M., Pööpelfuß, J., Becker, J.: Maturity models in business process management. BPMJ 18(2), 328–346 (2012)CrossRefGoogle Scholar
  24. 24.
    Bruin, T., Freeze, R., Rosemann, M.: Understanding the main phases of developing a maturity assessment model. In: Proceedings of the 16th Australasian Conference on Information Systems, ACIS 2005, pp. 1–10. AIS (2005)Google Scholar
  25. 25.
    Berg, P.: Assessment of quality and maturity level of R&D. Int. J. Prod. Econ. 78(1), 29–35 (2002)CrossRefGoogle Scholar
  26. 26.
    Akdil, K., Ustundag, A., Cevikan, E.: Maturity and readiness model for industry 4.0 strategy. In: Ustundag, A., Cevikcan, E. (eds.) Industry 4.0: Managing the Digital Transformation. SSAM, pp. 61–94. Springer, Cham (2018)Google Scholar
  27. 27.
    Mittal, S., Khan, M., Romero, D., Wuest, T.: A critical review of smart manufacturing & industry 4.0 maturity models: implications for small and medium-sized enterprises (SMEs). J. Manuf. Syst. 78(1), 29–35 (2018)Google Scholar
  28. 28.
    De Carolis, A., Macchi, M., Kulvatunyou, B., Brundage, M.P., Terzi, S.: Maturity models and tools for enabling smart manufacturing systems: comparison and reflections for future developments. In: Ríos, J., Bernard, A., Bouras, A., Foufou, S. (eds.) Product Lifecycle Management and the Industry of the Future: PLM 2017. IFIP-AICT, vol. 517, pp. 23–35. Springer, Cham (2017)CrossRefGoogle Scholar
  29. 29.
    Christiansen, S.-K., Gausemeier, J.: Klassifikation von Reifegradmodellen. ZWF 105(4), 51–59 (2010)CrossRefGoogle Scholar
  30. 30.
    Jankowska, B., Götz, M., Główka, C.: Intra-cluster cooperation enhancing SMEs’ competitiveness - the role of cluster organisations in Poland. Invest. Reg. 2017(39), 195–214 (2017)Google Scholar
  31. 31.
    Stentoft, J., Jensen, K., Philipsen, K., Anders, H.: Drivers and barriers for industry 4.0 readiness and practice: a SME perspective with empirical evidence. In: Proceedings of the 52nd Hawaii International Conference on System Sciences, pp. 5155–5164. HICSS (2019)Google Scholar
  32. 32.
    Zach, O., Munkvold, B., Olsen, D.: ERP system implementation in SMEs: exploring the influences of the SME context. Enterp. Inf. Syst. 8(2), 309–335 (2014)CrossRefGoogle Scholar
  33. 33.
    Issa, A., Hatiboglu, B., Bildstein, A., Bauernhansl, T.: Industrie 4.0 roadmap: framework for digital transformation based on the concepts of capability maturity and alignment. Procedia CIRP 72(1), 973–978 (2018)CrossRefGoogle Scholar
  34. 34.
    Mittal, S., Khan, M., Romero, D., Wuest, T.: Smart manufacturing: characteristics, technologies and enabling factors. Proc. Inst. Mech. Eng. Part B J. 233(5), 1342–1361 (2017)CrossRefGoogle Scholar
  35. 35.
    Mettler, T., Rohner, P.: Situational maturity models as instrumental artifacts for organizational design. In: Proceedings of the 4th International Conference on Design Science Research in Information Systems and Technology, DESRIST 2009, pp. 22-1–22-9. ACM (2009)Google Scholar
  36. 36.
    Škrinjar, R., Dimovski, V., Škerlavaj, M., Indihar Šternberger, M.: Process maturity and organizational structure as a framework for performance improvements. In: Nilsson, A.G., Gustas, R., Wojtkowski, W., Wojtkowski, W.G., Wrycza, S., Zupančič, J. (eds.) Advances in Information Systems Development: Bridging the Gap between Academia and Industry, pp. 95–106. Springer, Boston (2006)CrossRefGoogle Scholar
  37. 37.
    Stentoft, J., Rajkumar, C., Madsen, E.: Industry 4.0 in Danish Industry: An Empirical Investigation of the Degree of Knowledge, Perceived Relevance and Current Practice. Syddansk Universitet, Odense (2017)Google Scholar
  38. 38.
    Westermann, T.: Systematik zur Reifegradmodell-basierten Planung von Cyber-Physical Systems des Maschinen-und Anlagenbaus. Dissertationsverlag, Paderborn (2017)Google Scholar
  39. 39.
    Nolan, R.: Managing the computer resource: a stage hypothesis. Commun. ACM 16(7), 379–405 (1973)CrossRefGoogle Scholar
  40. 40.
    Crosby, P.: Quality is Free – The Art of Making Quality Certain. McGraw-Hill, New York (1979)Google Scholar
  41. 41.
    Biberoglu, E., Haddad, H.: A survey of industrial experiences with CMM and the teaching of CMM practices. J. Comput. Sci. Coll. 18(2), 143–152 (2002)Google Scholar
  42. 42.
    Lahrmann, G., Marx, F., Winter, R., Wortmann, F.: Business intelligence maturity models: an overview. In: D’Atri, A., Ferrara, M., George, J.F., Spagnoletti, P. (eds.) Information Technology and Innovation Trends in Organizations: itAIS 2010, pp. 1–12. LUISS University Press (2010)Google Scholar
  43. 43.
    Steenbergen, M.: The design of focus area maturity models. In: Winter, R., Zhao, J.L., Aier, S. (eds.) Global Perspectives on Design Science Research: DESRIST 2010. LNCS, vol. 6105, pp. 317–332. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  44. 44.
    Maier, A., Moultrie, J., Clarkson, J.P.: Developing maturity grids for assessing organisational capabilities: practitioner guidance. IEEE Trans. Eng. Manag. 59(1), 138–159 (2012)CrossRefGoogle Scholar
  45. 45.
    Henver, A.M., Salvatore, T., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28(1), 75–105 (2004)CrossRefGoogle Scholar
  46. 46.
    Fettke, P.: State-of-the-Art des State-of-the-Art. Eine Untersuchung der Forschungsmethode “Review” innerhalb der Wirtschaftsinformatik. Wirtschaftsinformatik 48(4), 257–266 (2006)CrossRefGoogle Scholar
  47. 47.
    Parida, V., Sjödin, D., Reim, W.: Reviewing literature on digitalization, business model innovation, and sustainable industry: past achievements and future promises. Sustainability 11(2), 390–408 (2019)CrossRefGoogle Scholar
  48. 48.
    Cooper, H.: Research Synthesis and Meta-Analysis: A Step-by-Step Approach. Cooper, Los Angeles (2010)Google Scholar
  49. 49.
    Meuser, M., Nagel, U.: Das Experteninterview – konzeptionelle Grundlagen und methodische Anlagen. In: Pickel, S., Pickel, G., Lauth, H.J., Jahn, D. (eds.) Methoden der vergleichenden Politik-und Sozialwissenschaft: Neue Entwicklungen und Anwendungen, pp. 465–479. VS Verlag für Sozialwissenschaftenpp, Wiesbaden (2009)CrossRefGoogle Scholar
  50. 50.
    Mayring, P.: Qualitative inhaltsanalyse. In: Flick, U., von Kardoff, E., Keupp, H., von Rosenstiel, L., Wolff, S. (eds.) Handbuch Qualitative Forschung: Grundlagen, Konzepte, Methoden und Anwendungen, pp. 209–212. Beltz – Psychologie Verlags Union, München (1991)Google Scholar
  51. 51.
    Lenka, S., Parida, V., Wincent, J.: Digitalization capabilities as enablers of value co-creation in servitizing firms. Psychol. Mark. 34(1), 92–100 (2017)CrossRefGoogle Scholar
  52. 52.
    Porter, M., Heppelmann, J.: How smart, connected products are transforming companies. Harv. Bus. Rev. 93(1), 96–111 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Christoph Szedlak
    • 1
    Email author
  • Bert Leyendecker
    • 1
  • Holger Reinemann
    • 1
  • Patrick Pötters
    • 1
  1. 1.Hochschule KoblenzKoblenzGermany

Personalised recommendations