Evaluating Edge Processing Requirements in Next Generation IoT Network Architectures

  • Brooks OlneyEmail author
  • Shakil MahmudEmail author
  • Robert KaramEmail author
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 574)


The Internet of Things (IoT) is a massively growing field with billions of devices in the field serving a multitude of purposes. Traditionally, IoT architectures consist of “edge” sensor nodes which are used purely for data collection, actuators for intermediary connectivity, gateways for transmitting data, and cloud servers for processing. However, as application requirements change, IoT architectures must evolve. In the next generation of IoT, traditional architectures may not hold due to power limitations, privacy concerns, or network reliability in certain environments. In particular, Artificial Intelligence (AI) and Machine Learning (ML) applications – especially image/video processing – have become increasingly widespread, and are famously data and compute intensive applications. In this paper, we give an overview and describe the shortcomings of traditional IoT architectures, and outline key scenarios where local processing may be preferred over transferring data to the cloud. We then describe and evaluate metrics which designers can use to assess the needs of their IoT platform. This framework will be beneficial to IoT device manufacturers and network architects for improving usability and reliability, while protecting privacy in the next generation of IoT.


Internet of Things (IoT) Artificial Intelligence Machine Learning Image processing Low power 


  1. 1.
    Aazam, M., Huh, E.N.: Fog computing and smart gateway based communication for cloud of things. In: 2014 International Conference on Future Internet of Things and Cloud, pp. 464–470. IEEE (2014)Google Scholar
  2. 2.
    Aazam, M., Khan, I., Alsaffar, A.A., Huh, E.N.: Cloud of things: integrating internet of things and cloud computing and the issues involved. In: Proceedings of 2014 11th International Bhurban Conference on Applied Sciences and Technology (IBCAST) Islamabad, Pakistan, 14th-18th January 2014, pp. 414–419. IEEE (2014)Google Scholar
  3. 3.
    Abdel-Hamid, O., Mohamed, A., Jiang, H., Deng, L., Penn, G., Yu, D.: Convolutional neural networks for speech recognition. IEEE/ACM Trans. Audio Speech Lang. Process. 22(10), 1533–1545 (2014)CrossRefGoogle Scholar
  4. 4.
    Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of Things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 17(4), 2347–2376 (2015). FourthquarterCrossRefGoogle Scholar
  5. 5.
    Castiglione, A., Choo, K.K.R., Nappi, M., Ricciardi, S.: Context aware ubiquitous biometrics in edge of military things. IEEE Cloud Comput. 4(6), 16–20 (2017)CrossRefGoogle Scholar
  6. 6.
    Christopoulos, C., Skodras, A., Ebrahimi, T.: The JPEG2000 still image coding system: an overview. IEEE Trans. Consum. Electron. 46(4), 1103–1127 (2000)CrossRefGoogle Scholar
  7. 7.
    Connor, J.T., Martin, R.D., Atlas, L.E.: Recurrent neural networks and robust time series prediction. IEEE Trans. Neural Netw. 5(2), 240–254 (1994)CrossRefGoogle Scholar
  8. 8.
    Delp, E., Mitchell, O.: Image compression using block truncation coding. IEEE Trans. Commun. 27(9), 1335–1342 (1979)CrossRefGoogle Scholar
  9. 9.
    Dillon, T., Wu, C., Chang, E.: Cloud computing: issues and challenges. In: 24th IEEE International Conference on Advanced Information Networking and Applications, pp. 27–33. IEEE (2010)Google Scholar
  10. 10.
    Guo, K., et al.: Angel-eye: a complete design flow for mapping CNN onto embedded FPGA. Trans. Comput. Aided Des. Integr. Circ. Syst. 37(1), 35–47 (2018)CrossRefGoogle Scholar
  11. 11.
    Gantz, D.R.: The digital universe in 2020: big data bigger digital shadows and biggest growth in the far east. In: IDC iView: IDC Anal Future (2007), pp. 1–16, December 2012Google Scholar
  12. 12.
    Kao, J.T., Chandrakasan, A.P.: Dual-threshold voltage techniques for low-power digital circuits. IEEE J. Solid-State Circuits 35(7), 1009–1018 (2000)CrossRefGoogle Scholar
  13. 13.
    Khan, R., Khan, S.U., Zaheer, R., Khan, S.: Future internet: the internet of things architecture, possible applications and key challenges. In: 10th International Conference on Frontiers of Information Technology, pp. 257–260. IEEE (2012)Google Scholar
  14. 14.
    Lacey, G., Taylor, G.W., Areibi, S.: Deep learning on FPGAs: Past, present, and future, February 2016Google Scholar
  15. 15.
    LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436 (2015)CrossRefGoogle Scholar
  16. 16.
    Li, H., Ota, K., Dong, M.: Learning IoT in edge: deep learning for the internet of things with edge computing. IEEE Netw. 32(1), 96–101 (2018)CrossRefGoogle Scholar
  17. 17.
    Mell, P., Grance, T., et al.: The NIST definition of cloud computing (2011)Google Scholar
  18. 18.
    NVIDIA: Artificial intelligence computer designed to drive autonomous cars (2017)Google Scholar
  19. 19.
    Pearson, S.: Taking account of privacy when designing cloud computing services. In: ICSE Workshop on Software Engineering Challenges of Cloud Computing, pp. 44–52. IEEE (2009)Google Scholar
  20. 20.
    Ray, B.: A bluetooth & ZigBee comparison for IoT applications, October 2015.
  21. 21.
    Ray, T.: AI is changing the entire nature of compute|ZDNet.
  22. 22.
    Rijmenam, M.: Self-driving cars will create 2 petabytes of data, what are the big data opportunities for the car industry? December 2016Google Scholar
  23. 23.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)CrossRefGoogle Scholar
  24. 24.
    Elminaam, D.S.A., Kader, H.M.A., Hadhoud, M.M.: Performance evaluation of symmetric encryption algorithms on power consumption for wireless devices. Int. J. Comput. Theory Eng. 1, 343–351 (2009) CrossRefGoogle Scholar
  25. 25.
    Shawahna, A., Sait, S.M., El-Maleh, A.: FPGA-based accelerators of deep learning networks for learning and classification: a review. IEEE Access 7, 7823–7859 (2019)CrossRefGoogle Scholar
  26. 26.
    Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges. IEEE Internet Things J. 3(5), 637–646 (2016)CrossRefGoogle Scholar
  27. 27.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014)Google Scholar
  28. 28.
    Somani, G., Gaur, M.S., Sanghi, D., Conti, M., Buyya, R.: Ddos attacks in cloud computing: issues, taxonomy, and future directions. Comput. Commun. 107, 30–48 (2017)CrossRefGoogle Scholar
  29. 29.
    Sze, V., Chen, Y., Yang, T., Emer, J.S.: Efficient processing of deep neural networks: a tutorial and survey. Proc. IEEE 105(12), 2295–2329 (2017)CrossRefGoogle Scholar
  30. 30.
    Wallace, G.K.: The JPEG still picture compression standard. IEEE Trans. Consum. Electron. 38(1), xviii–xxxiv (1992)CrossRefGoogle Scholar
  31. 31.
    Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object motion and behaviors. IEEE Trans. Syst. Man Cybern. 34(3), 334–352 (2004)CrossRefGoogle Scholar
  32. 32.
    Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.: Overview of the H. 264/AVC video coding standard. IEEE Trans. Circuits Syst. Video Technol. 13(7), 560–576 (2003)CrossRefGoogle Scholar
  33. 33.
    Xu, L.D., He, W., Li, S.: Internet of things in industries: a survey. IEEE Trans. Indust. Inf. 10(4), 2233–2243 (2014)CrossRefGoogle Scholar
  34. 34.
    Yi, D., Lei, Z., Liao, S., Li, S.Z.: Deep metric learning for person re-identification. In: 2014 22nd International Conference on Pattern Recognition, pp. 34–39, August 2014Google Scholar
  35. 35.
    Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research challenges. J. internet Serv. Appl. 1(1), 7–18 (2010)CrossRefGoogle Scholar
  36. 36.
    Zhang, S., Zhang, S., Chen, X., Huo, X.: Cloud computing research and development trend. In: Second International Conference on Future Networks, pp. 93–97. IEEE (2010)Google Scholar
  37. 37.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2020

Authors and Affiliations

  1. 1.University of South FloridaTampaUSA

Personalised recommendations