Advertisement

Toward Holistic Integration of Computing and Wireless Networking

  • Kwang-Cheng ChenEmail author
  • Yingze Wang
  • Zixiang Nie
  • Qimei Cui
Conference paper
  • 23 Downloads
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 574)

Abstract

To systematically cop complex systems engineering in Internet of Things, this paper looks into a technological challenge to effectively and efficiently integrate computing and wireless networking. One aspect is how machine learning and artificial intelligence to influence wireless networking, and another aspect is how wireless networking to enhance artificial intelligence computing. Finally, a holistic computing and networking architecture is introduced to examine implementation of holistic computing and wireless networking.

Keywords

Artificial intelligence Machine learning Wireless networks Internet of Things Edge computing 

References

  1. 1.
    Adeogun, R.: Calibration of stochastic radio propagation models using machine learning. IEEE Antennas Wirel. Propag. Lett. 18(12), 2538–2542 (2019)CrossRefGoogle Scholar
  2. 2.
    Bond, A.H., Gasser, L.: Readings in Distributed Artificial Intelligence. Morgan Kaufmann, San Mateo (2014)Google Scholar
  3. 3.
    Camelo, M., Claeys, M., Latré, S.: Parallel reinforcement learning with minimal communication overhead for IoT environments. IEEE Internet Things J. 7, 1387–1400 (2019)CrossRefGoogle Scholar
  4. 4.
    Chen, B., Wan, J., Shu, L., Li, P., Mukherjee, M., Yin, B.: Smart factory of Industry 4.0: key technologies, application case, and challenges. IEEE Access 6, 6505–6519 (2017)CrossRefGoogle Scholar
  5. 5.
    Chen, K.C., Hung, H.M.: Wireless robotic communication for collaborative multi-agent systems. In: ICC 2019-2019 IEEE International Conference on Communications (ICC), pp. 1–7. IEEE (2019)Google Scholar
  6. 6.
    Chen, K.C., Zhang, T., Gitlin, R.D., Fettweis, G.: Ultra-low latency mobile networking. IEEE Netw. 33(2), 181–187 (2018)CrossRefGoogle Scholar
  7. 7.
    Chih-Lin, I., Sun, Q., Liu, Z., Zhang, S., Han, S.: The big-data-driven intelligent wireless network: architecture, use cases, solutions, and future trends. IEEE Veh. Technol. Mag. 12(4), 20–29 (2017)CrossRefGoogle Scholar
  8. 8.
    Cui, Q., et al.: Big data analytics and network calculus enabling intelligent management of autonomous vehicles in a smart city. IEEE Internet Things J. 6(2), 2021–2034 (2018)CrossRefGoogle Scholar
  9. 9.
    Demazeau, Y.: From interactions to collective behaviour in agent-based systems. In: Proceedings of the 1st European Conference on Cognitive Science, Saint-Malo. Citeseer (1995)Google Scholar
  10. 10.
    Elango, M., Nachiappan, S., Tiwari, M.K.: Balancing task allocation in multi-robot systems using K-means clustering and auction based mechanisms. Expert Syst. Appl. 38(6), 6486–6491 (2011)CrossRefGoogle Scholar
  11. 11.
    Ferdowsi, A., Saad, W.: Deep learning for signal authentication and security in massive Internet-of-Things systems. IEEE Trans. Commun. 67(2), 1371–1387 (2019)CrossRefGoogle Scholar
  12. 12.
    Ge, X., Han, Q.L.: Distributed formation control of networked multi-agent systems using a dynamic event-triggered communication mechanism. IEEE Trans. Ind. Electron. 64(10), 8118–8127 (2017)CrossRefGoogle Scholar
  13. 13.
    He, D., Liu, C., Quek, T.Q., Wang, H.: Transmit antenna selection in MIMO wiretap channels: a machine learning approach. IEEE Wirel. Commun. Lett. 7(4), 634–637 (2018)CrossRefGoogle Scholar
  14. 14.
    He, Y., et al.: Deep-reinforcement-learning-based optimization for cache-enabled opportunistic interference alignment wireless networks. IEEE Trans. Veh. Technol. 66(11), 10433–10445 (2017)CrossRefGoogle Scholar
  15. 15.
    Hsiao, J.H., Chen, K.C.: Communication methodology to control a distributed multi-agent system. In: ICC 2019–2019 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2019)Google Scholar
  16. 16.
    Huang, L., Bi, S., Zhang, Y.J.: Deep reinforcement learning for online computation offloading in wireless powered mobile-edge computing networks. IEEE Trans. Mob. Comput., 1 (2019) Google Scholar
  17. 17.
    Ivanov, D., Dolgui, A., Sokolov, B., Werner, F., Ivanova, M.: A dynamic model and an algorithm for short-term supply chain scheduling in the smart factory Industry 4.0. Int. J. Prod. Res. 54(2), 386–402 (2016)CrossRefGoogle Scholar
  18. 18.
    Jiang, Z., He, Z., Chen, S., Molisch, A.F., Zhou, S., Niu, Z.: Inferring remote channel state information: Cramér-Rae lower bound and deep learning implementation. In: 2018 IEEE Global Communications Conference (GLOBECOM), pp. 1–7. IEEE (2018)Google Scholar
  19. 19.
    Kang, H.S., et al.: Smart manufacturing: past research, present findings, and future directions. Int. J. Precis. Eng. Manuf.-Green Technol. 3(1), 111–128 (2016).  https://doi.org/10.1007/s40684-016-0015-5MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kim, J., Hwang, G.: Adaptive bandwidth allocation based on sample path prediction with gaussian process regression. IEEE Trans. Wirel. Commun. 18(10), 4983–4996 (2019)CrossRefGoogle Scholar
  21. 21.
    Ko, E., Chen, K.C.: Wireless communications meets artificial intelligence: an illustration by autonomous vehicles on Manhattan streets. In: 2018 IEEE Global Communications Conference (GLOBECOM), pp. 1–7. IEEE (2018)Google Scholar
  22. 22.
    Legg, S., Hutter, M.: Universal intelligence: a definition of machine intelligence. Mind. Mach. 17(4), 391–444 (2007).  https://doi.org/10.1007/s11023-007-9079-xCrossRefGoogle Scholar
  23. 23.
    Lei, L., Xu, H., Xiong, X., Zheng, K., Xiang, W., Wang, X.: Multiuser resource control with deep reinforcement learning in IoT edge computing. IEEE Internet Things J. 6(6), 10119–10133 (2019)CrossRefGoogle Scholar
  24. 24.
    Li, L., Ota, K., Dong, M.: Deep learning for smart industry: efficient manufacture inspection system with fog computing. IEEE Trans. Ind. Inf. 14(10), 4665–4673 (2018)CrossRefGoogle Scholar
  25. 25.
    Li, L., Xu, Y., Yin, J., Liang, W., Li, X., Chen, W., Han, Z.: Deep reinforcement learning approaches for content caching in cache-enabled D2D networks. IEEE Internet Things J. 7(1), 544–557 (2020)CrossRefGoogle Scholar
  26. 26.
    Lin, C.Y., Chen, K.C., Wickramasuriya, D., Lien, S.Y., Gitlin, R.D.: Anticipatory mobility management by big data analytics for ultra-low latency mobile networking. In: 2018 IEEE International Conference on Communications (ICC), pp. 1–7. IEEE (2018)Google Scholar
  27. 27.
    Lin, C.C., Deng, D.J., Chih, Y.L., Chiu, H.T.: Smart manufacturing scheduling with edge computing using multi-class deep Q network. IEEE Trans. Ind. Inform. 15, 4276–4284 (2019)CrossRefGoogle Scholar
  28. 28.
    Liu, X., Liu, Y., Chen, Y., Hanzo, L.: Trajectory design and power control for multi-UAV assisted wireless networks: a machine learning approach. IEEE Trans. Veh. Technol. 68, 7957–7969 (2019)CrossRefGoogle Scholar
  29. 29.
    Liu, Y., Tong, K.F., Wong, K.K.: Reinforcement learning based routing for energy sensitive wireless mesh IoT networks. Electron. Lett. 55(17), 966–968 (2019)CrossRefGoogle Scholar
  30. 30.
    Liu, Z., Dai, J., Wu, B., Lin, H.: Communication-aware motion planning for multi-agent systems from signal temporal logic specifications. In: 2017 American Control Conference (ACC), pp. 2516–2521. IEEE (2017)Google Scholar
  31. 31.
    Mamdouh, M., Elrukhsi, M.A.I., Khattab, A.: Securing the Internet of Things and wireless sensor networks via machine learning: a survey. In: 2018 International Conference on Computer and Applications (ICCA), pp. 215–218. IEEE, Beirut, August 2018Google Scholar
  32. 32.
    Nguyen, D.D., Nguyen, H.X., White, L.B.: Reinforcement learning with network-assisted feedback for heterogeneous RAT selection. IEEE Trans. Wirel. Commun. 16(9), 6062–6076 (2017)CrossRefGoogle Scholar
  33. 33.
    Park, J., Samarakoon, S., Bennis, M., Debbah, M.: Wireless network intelligence at the edge. Proc. IEEE 107(11), 2204–2239 (2019)CrossRefGoogle Scholar
  34. 34.
    Pinto, E.M.d.L., Lachowski, R., Pellenz, M.E., Penna, M.C., Souza, R.D.: A machine learning approach for detecting spoofing attacks in wireless sensor networks. In: 2018 IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA), pp. 752–758. IEEE, Krakow, May 2018Google Scholar
  35. 35.
    Rahman, A., Jin, J., Cricenti, A.L., Rahman, A., Kulkarni, A.: Communication-aware cloud robotic task offloading with on-demand mobility for smart factory maintenance. IEEE Trans. Ind. Inf. 15(5), 2500–2511 (2018)CrossRefGoogle Scholar
  36. 36.
    Shiue, Y.R., Lee, K.C., Su, C.T.: Real-time scheduling for a smart factory using a reinforcement learning approach. Comput. Ind. Eng. 125, 604–614 (2018)CrossRefGoogle Scholar
  37. 37.
    Stein, S., Williamson, S.A., Jennings, N.R.: Decentralised channel allocation and information sharing for teams of cooperative agents. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 231–238. International Foundation for Autonomous Agents and Multiagent Systems (2012)Google Scholar
  38. 38.
    Tao, F., Qi, Q., Liu, A., Kusiak, A.: Data-driven smart manufacturing. J. Manuf. Syst. 48, 157–169 (2018)CrossRefGoogle Scholar
  39. 39.
    Tereshchuk, V., Stewart, J., Bykov, N., Pedigo, S., Devasia, S., Banerjee, A.G.: An efficient scheduling algorithm for multi-robot task allocation in assembling aircraft structures. arXiv preprint arXiv:1902.08905 (2019)CrossRefGoogle Scholar
  40. 40.
    Thoben, K.D., Wiesner, S., Wuest, T.: “Industrie 4.0” and smart manufacturing-a review of research issues and application examples. Int. J. Autom. Technol. 11(1), 4–16 (2017)CrossRefGoogle Scholar
  41. 41.
    Wang, S., Shin, Y.: Efficient routing protocol based on reinforcement learning for magnetic induction underwater sensor networks. IEEE Access 7, 82027–82037 (2019)CrossRefGoogle Scholar
  42. 42.
    Wang, S., Wan, J., Li, D., Zhang, C.: Implementing smart factory of Industrie 4.0: an outlook. Int. J. Distrib. Sens. Netw. 12(1), 3159805 (2016)CrossRefGoogle Scholar
  43. 43.
    Wang, Z., Zhang, J., Zhang, X., Wang, W.: Reinforcement learning based congestion control in satellite Internet of Things. In: 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP), pp. 1–6. IEEE, Xi’an, October 2019Google Scholar
  44. 44.
    Wei, Y., Yu, F.R., Song, M., Han, Z.: Joint optimization of caching, computing, and radio resources for fog-enabled IoT using natural actor-critic deep reinforcement learning. IEEE Internet Things J. 6(2), 2061–2073 (2019)CrossRefGoogle Scholar
  45. 45.
    Wu, D., Jennings, C., Terpenny, J., Gao, R.X., Kumara, S.: A comparative study on machine learning algorithms for smart manufacturing: tool wear prediction using random forests. J. Manuf. Sci. Eng. 139(7), 071018 (2017)CrossRefGoogle Scholar
  46. 46.
    Wu, H., Zhang, Z., Jiao, C., Li, C., Quek, T.Q.S.: Learn to sense: a meta-learning-based sensing and fusion framework for wireless sensor networks. IEEE Internet Things J. 6(5), 8215–8227 (2019)CrossRefGoogle Scholar
  47. 47.
    Wuest, T., Weimer, D., Irgens, C., Thoben, K.D.: Machine learning in manufacturing: advantages, challenges, and applications. Prod. Manuf. Res. 4(1), 23–45 (2016)Google Scholar
  48. 48.
    Xia, F., Song, H., Xu, C.: Securing the wireless environment of IoT. In: 2018 IEEE International Conference of Safety Produce Informatization (IICSPI), pp. 315–318. IEEE, Chongqing, December 2018Google Scholar
  49. 49.
    Xia, W., Di, C., Guo, H., Li, S.: Reinforcement learning based stochastic shortest path finding in wireless sensor networks. IEEE Access 7, 157807–157817 (2019)CrossRefGoogle Scholar
  50. 50.
    Xuan, P., Lesser, V., Zilberstein, S.: Communication decisions in multi-agent cooperation: model and experiments. In: Proceedings of the Fifth International Conference on Autonomous Agents, pp. 616–623. ACM (2001)Google Scholar
  51. 51.
    Yang, C., Chin, K.W., He, T., Liu, Y.: On sampling time maximization in wireless powered Internet of Things. IEEE Trans. Green Commun. Netw. 3(3), 641–650 (2019)CrossRefGoogle Scholar
  52. 52.
    Yao, F., Jia, L.: A collaborative multi-agent reinforcement learning anti-jamming algorithm in wireless networks. IEEE Wirel. Commun. Lett. 8(4), 1024–1027 (2019)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Ye, H., Li, G.Y., Juang, B.H.: Power of deep learning for channel estimation and signal detection in OFDM systems. IEEE Wirel. Commun. Lett. 7(1), 114–117 (2017)CrossRefGoogle Scholar
  54. 54.
    Yu, Y., Wang, T., Liew, S.C.: Deep-reinforcement learning multiple access for heterogeneous wireless networks. IEEE J. Sel. Areas Commun. 37(6), 1277–1290 (2019)CrossRefGoogle Scholar
  55. 55.
    Zhang, C., Zhang, H., Qiao, J., Yuan, D., Zhang, M.: Deep transfer learning for intelligent cellular traffic prediction based on cross-domain big data. IEEE J. Sel. Areas Commun. 37(6), 1389–1401 (2019)CrossRefGoogle Scholar
  56. 56.
    Zhang, L., Restuccia, F., Melodia, T., Pudlewski, S.M.: Taming cross-layer attacks in wireless networks: a Bayesian learning approach. IEEE Trans. Mob. Comput. 18(7), 1688–1702 (2018)CrossRefGoogle Scholar
  57. 57.
    Zhang, Y., Cai, P., Pan, C., Zhang, S.: Multi-agent deep reinforcement learning-based cooperative spectrum sensing with upper confidence bound exploration. IEEE Access 7, 118898–118906 (2019)CrossRefGoogle Scholar
  58. 58.
    Zhao, P., Tian, H., Cheny, K.C., Fan, S., Nie, G.: Context-aware TDD configuration and resource allocation for mobile edge computing. IEEE Trans. Commun. 68, 1118–1131 (2019)CrossRefGoogle Scholar
  59. 59.
    Zheng, P., et al.: Smart manufacturing systems for Industry 4.0: conceptual framework, scenarios, and future perspectives. Front. Mech. Eng. 13(2), 137–150 (2018).  https://doi.org/10.1007/s11465-018-0499-5CrossRefGoogle Scholar
  60. 60.
    Zhou, L., Yang, P., Chen, C., Gao, Y.: Multiagent reinforcement learning with sparse interactions by negotiation and knowledge transfer. IEEE Trans. Cybern. 47(5), 1238–1250 (2016)CrossRefGoogle Scholar
  61. 61.
    Zhu, H., Cao, Y., Wei, X., Wang, W., Jiang, T., Jin, S.: Caching transient data for Internet of Things: a deep reinforcement learning approach. IEEE Internet Things J. 6(2), 2074–2083 (2019)CrossRefGoogle Scholar
  62. 62.
    Zhu, J., Song, Y., Jiang, D., Song, H.: A new deep-Q-learning-based transmission scheduling mechanism for the cognitive Internet of Things. IEEE Internet Things J. 5(4), 2375–2385 (2018)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2020

Authors and Affiliations

  • Kwang-Cheng Chen
    • 1
    Email author
  • Yingze Wang
    • 1
    • 2
  • Zixiang Nie
    • 1
  • Qimei Cui
    • 2
  1. 1.University of South FloridaTampaUSA
  2. 2.Beijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations