Advertisement

Behavioral Security in Covert Communication Systems

  • Zhongliang YangEmail author
  • Yuting Hu
  • Yongfeng Huang
  • Yujin Zhang
Conference paper
  • 58 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12022)

Abstract

The purpose of the covert communication system is to implement the communication process without causing third party perception. In order to achieve complete covert communication, two aspects of security issues need to be considered. The first one is to cover up the existence of information, that is, to ensure the content security of information; the second one is to cover up the behavior of transmitting information, that is, to ensure the behavioral security of communication. However, most of the existing information hiding models are based on the “Prisoners’ Model”, which only considers the content security of carriers, while ignoring the behavioral security of the sender and receiver. We think that this is incomplete for the security of covert communication. In this paper, we propose a new covert communication framework, which considers both content security and behavioral security in the process of information transmission. In the experimental part, we analyzed a large amount of collected real Twitter data to illustrate the security risks that may be brought to covert communication if we only consider content security and neglect behavioral security. Finally, we designed a toy experiment, pointing out that in addition to most of the existing content steganography, under the proposed new framework of covert communication, we can also use user’s behavior to implement behavioral steganography. We hope this new proposed framework will help researchers to design better covert communication systems.

Keywords

Covert communication Content security Behavioral security Behavioral steganography 

Notes

Acknowledgment

The authors thank Dr. Shujun Li for constructive communications. This work was supported in part by the National Key Research and Development Program of China under Grant 2018YFB0804103 and the National Natural Science Foundation of China (No. U1536207, No. U1705261 and No. U1636113).

References

  1. 1.
    Shannon, C.E.: Communication theory of secrecy systems. Bell Labs Tech. J. 28(4), 656–715 (1949)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Beller, M.J., Chang, L.-F., Yacobi, Y.: Privacy and authentication on a portable communications system. IEEE J. Sel. Areas Commun. 11(6), 821–829 (1993)CrossRefGoogle Scholar
  4. 4.
    Simmons, G.J.: The prisoners’ problem and the subliminal channel. In: Chaum, D. (ed.) Advances in Cryptology, pp. 51–67. Springer, Boston (1984)CrossRefGoogle Scholar
  5. 5.
    Fridrich, J.: Steganography in Digital Media: Principles, Algorithms, and Applications. Cambridge University Press, New York (2009)CrossRefGoogle Scholar
  6. 6.
    Yang, Z., Du, X., Tan, Y., Huang, Y., Zhang, Y.-J.: AAG-stega: automatic audio generation-based steganography. arXiv preprint arXiv:1809.03463 (2018)
  7. 7.
    Yang, Z.-L., Guo, X.-Q., Chen, Z.-M., Huang, Y.-F., Zhang, Y.-J.: RNN-stega: linguistic steganography based on recurrent neural networks. IEEE Trans. Inf. Forensics Secur. 14(5), 1280–1295 (2019)CrossRefGoogle Scholar
  8. 8.
    Yang, Z., Peng, X., Huang, Y.: A sudoku matrix-based method of pitch period steganography in low-rate speech coding. In: Lin, X., Ghorbani, A., Ren, K., Zhu, S., Zhang, A. (eds.) SecureComm 2017. LNICST, vol. 238, pp. 752–762. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78813-5_40CrossRefGoogle Scholar
  9. 9.
    Yang, Z., Wei, N., Sheng, J., Huang, Y., Zhang, Y.-J.: TS-CNN: text steganalysis from semantic space based on convolutional neural network. arXiv preprint arXiv:1810.08136 (2018)
  10. 10.
    Yang, Z., Jin, S., Huang, Y., Zhang, Y., Li, H.: Automatically generate steganographic text based on Markov model and Huffman coding. arXiv preprint arXiv:1811.04720 (2018)
  11. 11.
    Yang, Z., Yang, H., Hu, Y., Huang, Y., Zhang, Y.-J.: Real-time steganalysis for stream media based on multi-channel convolutional sliding windows. arXiv preprint arXiv:1902.01286 (2019)
  12. 12.
    Yang, Z., Wang, K., Li, J., Huang, Y., Zhang, Y.: TS-RNN: text steganalysis based on recurrent neural networks. IEEE Sig. Process. Lett. 26, 1743–1747 (2019)CrossRefGoogle Scholar
  13. 13.
    Yang, Z., Zhang, P., Jiang, M., Huang, Y., Zhang, Y.-J.: RITS: real-time interactive text steganography based on automatic dialogue model. In: Sun, X., Pan, Z., Bertino, E. (eds.) ICCCS 2018. LNCS, vol. 11065, pp. 253–264. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00012-7_24CrossRefGoogle Scholar
  14. 14.
    Cachin, C.: An information-theoretic model for steganography. Inf. Comput. 192(1), 41–56 (2004)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Li, S., Ho, A.T., Wang, Z., Zhang, X.: Lost in the digital wild: hiding information in digital activities. In: Proceedings of the 2nd International Workshop on Multimedia Privacy and Security, pp. 27–37. ACM (2018)Google Scholar
  16. 16.
    Pantic, N., Husain, M.I.: Covert botnet command and control using twitter. In: Proceedings of the 31st Annual Computer Security Applications Conference, pp. 171–180. ACM (2015)Google Scholar
  17. 17.
    Zhang, X.: Behavior steganography in social network. In: Pan, J.S., Tsai, P.W., Huang, H.C. (eds.) Advances in Intelligent Information Hiding and Multimedia Signal Processing. SIST, vol. 63, pp. 21–23. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-50209-0_3CrossRefGoogle Scholar
  18. 18.
    Costa, A.F., Yamaguchi, Y., Traina, A.J.M., Faloutsos, C., et al.: Modeling temporal activity to detect anomalous behavior in social media. ACM Trans. Knowl. Discov. Data (TKDD) 11(4), 49 (2017)Google Scholar
  19. 19.
    Chino, D.Y., Costa, A.F., Traina, A.J., Faloutsos, C.: VolTime: unsupervised anomaly detection on users’ online activity volume. In: Proceedings of the 2017 SIAM International Conference on Data Mining, pp. 108–116. SIAM (2017)Google Scholar
  20. 20.
    Ranshous, S., Shen, S., Koutra, D., Harenberg, S., Faloutsos, C., Samatova, N.F.: Anomaly detection in dynamic networks: a survey. Wiley Interdisc. Rev. Comput. Stat. 7(3), 223–247 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Anand, K., Kumar, J., Anand, K.: Anomaly detection in online social network: a survey. In: 2017 International Conference on Inventive Communication and Computational Technologies (ICICCT), pp. 456–459. IEEE (2017)Google Scholar
  22. 22.
    Hutto, C.J., Gilbert, E.: VADER: a parsimonious rule-based model for sentiment analysis of social media text. In: Eighth International AAAI Conference on Weblogs and Social Media (2014)Google Scholar
  23. 23.
    Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88(17), 174102 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Zhongliang Yang
    • 1
    • 2
    Email author
  • Yuting Hu
    • 1
    • 2
  • Yongfeng Huang
    • 1
    • 2
  • Yujin Zhang
    • 1
    • 2
  1. 1.The Department of Electronic EngineeringTsinghua UniversityBeijingChina
  2. 2.Beijing National Research Center for Information Science and TechnologyBeijingChina

Personalised recommendations