Skip to main content

Neuropsychological, Emotional, and Cognitive Investigations with Transcranial Direct Current Stimulation (TDCS)

  • Chapter
  • First Online:
Non Invasive Brain Stimulation in Psychiatry and Clinical Neurosciences

Abstract

The application of transcranial brain stimulation in research on the neural implementations of human cognition, emotion, and action is on a steady rise and offers unique insights for cognitive and affective neuroscience. By manipulating brain activity, the main rationale of experimental brain stimulation studies permits causal inferences between neurophysiological effects in targeted brain regions and behavioral outcomes. Particularly subthreshold neuromodulation effects of transcranial direct current stimulation (tDCS) are well suited for behavioral investigations. Through tDCS, behavior can be studied in parallel to neuromodulation because adverse sensations usually diminish to a negligible degree after some minutes of stimulation; no distracting noises influence normally occurring behaviors; and tDCS configurations can usually comply with task requirements, including relatively free movement. Thus, tDCS has become a flexible and powerful research tool, which can be easily integrated in research. What is more often neglected, however, are assumptions on the neural effects of tDCS in any brain region in combination with the effects of a task on the same and other brain regions. Accumulating studies demonstrate that it is insufficient to consider tDCS as manipulation of a static system, sometimes refined by considering global electric field distributions and/or general neurophysiological models with questionable relevance for the behaving individual of interest. In this chapter, we describe possible applications of tDCS interventions for research in neuropsychological, emotional, and cognitive research. Emerging principles for research in those areas are highlighted and paradigmatic studies are explored. Finally, we suggest and comment future directions regarding technical and design-specific developments in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fertonani A, Miniussi C. Transcranial electrical stimulation: what we know and do not know about mechanisms. Neuroscientist. 2017;23(2):109–23. https://doi.org/10.1177/1073858416631966.

    Article  PubMed  Google Scholar 

  2. Polanía R, Nitsche MA, Ruff CC. Studying and modifying brain function with non-invasive brain stimulation. Nat Neurosci. 2018;21:174–87. https://doi.org/10.1038/s41593-017-0054-4.

    Article  CAS  PubMed  Google Scholar 

  3. Driver J, Blankenburg F, Bestmann S, Vanduffel W, Ruff CC. Concurrent brain-stimulation and neuroimaging for studies of cognition. Trends Cogn Sci. 2009;13(7):319–27. https://doi.org/10.1016/j.tics.2009.04.007.

    Article  PubMed  Google Scholar 

  4. Woods AJ, Bikson M, Chelette K, Dmochowski J, Dutta A, Esmaeilpour Z, et al. Transcranial direct current stimulation integration with magnetic resonance imaging, magnetic resonance spectroscopy, near infrared spectroscopy imaging, and electroencephalography. In: Knotkova H, Nitsche MA, Bikson M, Woods AJ, editors. Practical guide to transcranial direct current stimulation: principles, procedures and applications. Cham: Springer; 2019. p. 293–345. https://doi.org/10.1007/978-3-319-95948-1_11.

    Chapter  Google Scholar 

  5. Legon W, Sato TF, Opitz A, Mueller J, Barbour A, Williams A, Tyler WJ. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci. 2014;17(2):322–9. https://doi.org/10.1038/nn.3620.

    Article  CAS  PubMed  Google Scholar 

  6. Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006;117(4):845–50. https://doi.org/10.1016/j.clinph.2005.12.003.

    Article  PubMed  Google Scholar 

  7. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(Pt 3):633–9. https://doi.org/10.1111/j.1469-7793.2000.t01-1-00633.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Priori A, Berardelli A, Rona S, Accornero N, Manfredi M. Polarization of the human motor cortex through the scalp. Neuroreport. 1998;9(10):2257–60. https://doi.org/10.1097/00001756-199807130-00020.

    Article  CAS  PubMed  Google Scholar 

  9. Rogalewski A, Breitenstein C, Nitsche MA, Paulus W, Knecht S. Transcranial direct current stimulation disrupts tactile perception. Eur J Neurosci. 2004;20(1):2001–4. https://doi.org/10.1111/j.1460-9568.2004.03450.x.

    Article  Google Scholar 

  10. Antal A, Nitsche MA, Kruse W, Kincses TZ, Hoffmann K-P, Paulus W. Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans. J Cogn Neurosci. 2004;16(4):521–7. https://doi.org/10.1162/089892904323057263.

    Article  PubMed  Google Scholar 

  11. Bikson M, Inoue M, Akiyama H, Deans JK, Fox JE, Miyakawa H, Jefferys JGR. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol. 2004;557(Pt 1):175–90. https://doi.org/10.1113/jphysiol.2003.055772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Miniussi C, Harris JA, Ruzzoli M. Modelling non-invasive brain stimulation in cognitive neuroscience. Neurosci Biobehav Rev. 2013;37(8):1702–12. https://doi.org/10.1016/j.neubiorev.2013.06.014.

    Article  PubMed  Google Scholar 

  13. Batsikadze G, Moliadze V, Paulus W, Kuo M-F, Nitsche MA. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol. 2013;591(7):1987–2000. https://doi.org/10.1113/jphysiol.2012.249730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jamil A, Batsikadze G, Kuo H-I, Labruna L, Hasan A, Paulus W, Nitsche MA. Systematic evaluation of the impact of stimulation intensity on neuroplastic after-effects induced by transcranial direct current stimulation. J Physiol. 2017;595(4):1273–88. https://doi.org/10.1113/JP272738.

    Article  CAS  PubMed  Google Scholar 

  15. Jacobson L, Koslowsky M, Lavidor M. tDCS polarity effects in motor and cognitive domains: a meta-analytical review. Exp Brain Res. 2012;216(1):1–10. https://doi.org/10.1007/s00221-011-2891-9.

    Article  PubMed  Google Scholar 

  16. Schroeder PA, Nuerk H-C, Plewnia C. Switching between multiple codes of SNARC-like associations: two conceptual replication attempts with anodal tDCS in sham-controlled cross-over design. Front Neurosci. 2017;11:654. https://doi.org/10.3389/fnins.2017.00654.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bestmann S, de Berker AO, Bonaiuto J. Understanding the behavioural consequences of noninvasive brain stimulation. Trends Cogn Sci. 2015;19(1):13–20. https://doi.org/10.1016/j.tics.2014.10.003.

    Article  PubMed  Google Scholar 

  18. Stagg CJ, Best JG, Stephenson MC, O’Shea J, Wylezinska M, Kincses ZT, et al. Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J Neurosci. 2009;29(16):5202–6. https://doi.org/10.1523/JNEUROSCI.4432-08.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kuo H-II, Bikson M, Datta A, Minhas P, Paulus W, Kuo M-FF, Nitsche MA. Comparing cortical plasticity induced by conventional and high-definition 4 × 1 ring tDCS: a neurophysiological study. Brain Stimul. 2013;6(4):644–8. https://doi.org/10.1016/j.brs.2012.09.010.

    Article  PubMed  Google Scholar 

  20. Fritsch B, Reis J, Martinowich K, Schambra HM, Ji Y, Cohen LG, Lu B. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron. 2010;66(2):198–204. https://doi.org/10.1016/j.neuron.2010.03.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bikson M, Rahman A. Origins of specificity during tDCS: anatomical, activity-selective, and input-bias mechanisms. Front Hum Neurosci. 2013;7:688. https://doi.org/10.3389/fnhum.2013.00688.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schroeder PA, Nuerk H-C, Plewnia C. Prefrontal neuromodulation reverses spatial associations of non-numerical sequences, but not numbers. Biol Psychol. 2017;128:39–49. https://doi.org/10.1016/j.biopsycho.2017.07.008.

    Article  PubMed  Google Scholar 

  23. Gill J, Shah-basak PP, Hamilton R. It’s the thought that counts: examining the task-dependent effects of transcranial direct current stimulation on executive function. Brain Stimul. 2015;8(2):253–9. https://doi.org/10.1016/j.brs.2014.10.018.

    Article  PubMed  Google Scholar 

  24. Zwissler B, Sperber C, Aigeldinger S, Schindler S, Kissler J, Plewnia C. Shaping memory accuracy by left prefrontal transcranial direct current stimulation. J Neurosci. 2014;34(11):4022–6. https://doi.org/10.1523/JNEUROSCI.5407-13.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hauser TU, Rütsche B, Wurmitzer K, Brem S, Ruff CC, Grabner RH. Neurocognitive effects of transcranial direct current stimulation in arithmetic learning and performance: a simultaneous tDCS-fMRI study. Brain Stimul. 2016;9(6):850–8. https://doi.org/10.1016/j.brs.2016.07.007.

    Article  PubMed  Google Scholar 

  26. Dedoncker J, Brunoni AR, Baeken C, Vanderhasselt M-A. A systematic review and meta-analysis of the effects of transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex in healthy and neuropsychiatric samples: influence of stimulation parameters. Brain Stimul. 2016;9(4):501–17. https://doi.org/10.1016/j.brs.2016.04.006.

    Article  PubMed  Google Scholar 

  27. Friehs MA, Frings C. Offline beats online: transcranial direct current stimulation timing influences on working memory. Neuroreport. 2019;30(12):795–9.

    Article  Google Scholar 

  28. Krause B, Cohen Kadosh R. Not all brains are created equal: the relevance of individual differences in responsiveness to transcranial electrical stimulation. Front Syst Neurosci. 2014;8:25. https://doi.org/10.3389/fnsys.2014.00025.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Brunelin J, Hasan A, Haesebaert F, Nitsche MA, Poulet E. Nicotine smoking prevents the effects of frontotemporal transcranial direct current stimulation (tDCS) in hallucinating patients with schizophrenia. Brain Stimul. 2015;8(6):1225–7. https://doi.org/10.1016/j.brs.2015.08.002.

    Article  PubMed  Google Scholar 

  30. Thirugnanasambandam N, Grundey J, Adam K, Drees A, Skwirba AC, Lang N, et al. Nicotinergic impact on focal and non-focal neuroplasticity induced by non-invasive brain stimulation in non-smoking humans. Neuropsychopharmacology. 2011;36(4):879–86. https://doi.org/10.1038/npp.2010.227.

    Article  CAS  PubMed  Google Scholar 

  31. Wiegand A, Nieratschker V, Plewnia C. Genetic modulation of transcranial direct current stimulation effects on cognition. Front Hum Neurosci. 2016;10:651. https://doi.org/10.3389/fnhum.2016.00651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Plewnia C, Zwissler B, Längst I, Maurer B, Giel KE, Krüger R. Effects of transcranial direct current stimulation (tDCS) on executive functions: influence of COMT Val/Met polymorphism. Cortex. 2013;49(7):1801–7. https://doi.org/10.1016/j.cortex.2012.11.002.

    Article  PubMed  Google Scholar 

  33. Nieratschker V, Kiefer C, Giel KE, Krüger R, Plewnia C. The COMT Val/Met polymorphism modulates effects of tDCS on response inhibition. Brain Stimul. 2015;8(2):283–8. https://doi.org/10.1016/j.brs.2014.11.009.

    Article  PubMed  Google Scholar 

  34. Jongkees BJ, Sellaro R, Beste C, Nitsche MA, Kühn S, Colzato LS. L-Tyrosine administration modulates the effect of transcranial direct current stimulation on working memory in healthy humans. Cortex. 2017;90:103–14. https://doi.org/10.1016/j.cortex.2017.02.014.

    Article  PubMed  Google Scholar 

  35. Fresnoza S, Stiksrud E, Klinker F, Liebetanz D, Paulus W, Kuo MF, Nitsche MA. Dosage-dependent effect of dopamine D2 receptor activation on motor cortex plasticity in humans. J Neurosci. 2014;34(32):10701–9. https://doi.org/10.1523/JNEUROSCI.0832-14.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Monte-Silva K, Liebetanz D, Grundey J, Paulus W, Nitsche MA. Dosage-dependent non-linear effect of l-dopa on human motor cortex plasticity. J Physiol. 2010;588(18):3415–24. https://doi.org/10.1113/jphysiol.2010.190181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jongkees BJ, Loseva AA, Yavari FB, Nitsche MA, Colzato LS. The COMT Val 158 Met polymorphism does not modulate the after-effect of tDCS on working memory. Eur J Neurosci. 2019;49(2):263–74. https://doi.org/10.1111/ejn.14261.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Brunoni AR, Amadera J, Berbel B, Volz MS, Rizzerio BG, Fregni F. A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int J Neuropsychopharmacol. 2011;14(8):1133–45. https://doi.org/10.1017/S1461145710001690.

    Article  PubMed  Google Scholar 

  39. Ray MK, Sylvester MD, Helton A, Pittman BR, Wagstaff LE, McRae TR, et al. The effect of expectation on transcranial direct current stimulation (tDCS) to suppress food craving and eating in individuals with overweight and obesity. Appetite. 2019;136(2019):1–7. https://doi.org/10.1016/j.appet.2018.12.044.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Antal A, Nitsche MA, Paulus W. External modulation of visual perception in humans. Neuroreport. 2001;12(16):3553–5. https://doi.org/10.1097/00001756-200111160-00036.

    Article  CAS  PubMed  Google Scholar 

  41. Nitsche MA, Schauenburg A, Lang N, Liebetanz D, Exner C, Paulus W, Tergau F. Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J Cogn Neurosci. 2003;15(4):619–26. https://doi.org/10.1162/089892903321662994.

    Article  PubMed  Google Scholar 

  42. Fregni F, Boggio PS, Nitsche MA, Bermpohl F, Antal A, Feredoes E, et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res. 2005;166(1):23–30. https://doi.org/10.1007/s00221-005-2334-6.

    Article  PubMed  Google Scholar 

  43. Hill AT, Fitzgerald PB, Hoy KE. Effects of anodal transcranial direct current stimulation on working memory: a systematic review and meta-analysis of findings from healthy and neuropsychiatric populations. Brain Stimul. 2016;9(2):197–208. https://doi.org/10.1016/j.brs.2015.10.006.

    Article  PubMed  Google Scholar 

  44. Berryhill ME, Peterson DJ, Jones KT, Stephens JA. Hits and misses: leveraging tDCS to advance cognitive research. Front Psychol. 2014;5:800. https://doi.org/10.3389/fpsyg.2014.00800.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Schroeder PA, Pfister R, Kunde W, Nuerk H-C, Plewnia C. Counteracting implicit conflicts by electrical inhibition of the prefrontal cortex. J Cogn Neurosci. 2016;28(11):1737–48. https://doi.org/10.1162/jocn.

    Article  PubMed  Google Scholar 

  46. Friehs MA, Frings C. Pimping inhibition: anodal tDCS enhances stop-signal reaction time. J Exp Psychol Hum Percept Perform. 2018;44(12):1933–45. https://doi.org/10.1037/xhp0000579.

    Article  PubMed  Google Scholar 

  47. Coffman BA, Clark VP, Parasuraman R. Battery powered thought: enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. Neuroimage. 2014;85:895–908. https://doi.org/10.1016/j.neuroimage.2013.07.083.

    Article  PubMed  Google Scholar 

  48. Ruf SP, Fallgatter AJ, Plewnia C. Augmentation of working memory training by transcranial direct current stimulation (tDCS). Sci Rep. 2017;7(1):876. https://doi.org/10.1038/s41598-017-01055-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gbadeyan O, McMahon K, Steinhauser M, Meinzer M. Stimulation of dorsolateral prefrontal cortex enhances adaptive cognitive control: a high-definition transcranial direct current stimulation study. J Neurosci. 2016;36(50):12530–6. https://doi.org/10.1523/JNEUROSCI.2450-16.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Damasio AR, Everitt BJ, Bishop D. The somatic marker hypothesis and the possible functions of the prefrontal cortex [and discussion]. Philos Trans R Soc B Biol Sci. 1996;351(1346):1413–20.

    Article  CAS  Google Scholar 

  51. Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001;24:167–202. https://doi.org/10.1146/annurev.neuro.24.1.167.

    Article  CAS  PubMed  Google Scholar 

  52. Ochsner KN, Gross JJ. The cognitive control of emotion. Trends Cogn Sci. 2005;9(5):242–9. https://doi.org/10.1016/j.tics.2005.03.010.

    Article  PubMed  Google Scholar 

  53. Feeser M, Prehn K, Kazzer P, Mungee A, Bajbouj M. Transcranial direct current stimulation enhances cognitive control during emotion regulation. Brain Stimul. 2014;7(1):105–12. https://doi.org/10.1016/j.brs.2013.08.006.

    Article  PubMed  Google Scholar 

  54. Pripfl J, Lamm C. Focused transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex modulates specific domains of self-regulation. Neurosci Res. 2015;91:41–7. https://doi.org/10.1016/j.neures.2014.09.007.

    Article  PubMed  Google Scholar 

  55. Plewnia C, Schroeder PA, Wolkenstein L. Targeting the biased brain: non-invasive brain stimulation to ameliorate cognitive control. Lancet Psychiatry. 2015;2(4):351–6. https://doi.org/10.1016/S2215-0366(15)00056-5.

    Article  PubMed  Google Scholar 

  56. Gross JJ, Thompson R. Emotion regulation: conceptual foundations. In: Gross JJ, editor. Handbook of emotion regulation. New York: Guildford Press; 2007. p. 3–24.

    Google Scholar 

  57. Nitsche MA, Koschack J, Pohlers H, Hullemann S, Paulus W, Happe S. Effects of frontal transcranial direct current stimulation on emotional state and processing in healthy humans. Front Psych. 2012;3:58. https://doi.org/10.3389/fpsyt.2012.00058.

    Article  CAS  Google Scholar 

  58. Baron-Cohen S, Wheelwright S, Hill J, Raste Y, Plumb I. The “‘Reading the Mind in the Eyes’” test revised version: a study with normal adults, and adults with Asperger syndrome or high-functioning autism. J Child Psychol Psychiatry Allied Discip. 2001;42:241–51.

    Article  CAS  Google Scholar 

  59. Klimm N, Ehlis A-C, Plewnia C. EP 26. Reduction of excitability in the left inferior frontal gyrus by cathodal tDCS facilitates emotion recognition. Clin Neurophysiol. 2016;127(9):e244–5. https://doi.org/10.1016/j.clinph.2016.05.081.

    Article  Google Scholar 

  60. Plewnia C, Schroeder PA, Kunze R, Faehling F, Wolkenstein L. Keep calm and carry on: improved frustration tolerance and processing speed by transcranial direct current stimulation (tDCS). PLoS One. 2015;10(4):e0122578. https://doi.org/10.1371/journal.pone.0122578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Siegle GJ, Ghinassi F, Thase ME. Neurobehavioral therapies in the 21st century: summary of an emerging field and an extended example of cognitive control training for depression. Cognit Ther Res. 2007;31(2):235–62. https://doi.org/10.1007/s10608-006-9118-6.

    Article  Google Scholar 

  62. Faehling F, Plewnia C. Controlling the emotional bias: performance, late positive potentials, and the effect of anodal transcranial direct current stimulation (tDCS). Front Cell Neurosci. 2016;10(June):1–13. https://doi.org/10.3389/fncel.2016.00159.

    Article  Google Scholar 

  63. Pope PA, Miall RC. Task-specific facilitation of cognition by cathodal transcranial direct current stimulation of the cerebellum. Brain Stimul. 2012;5(2):84–94. https://doi.org/10.1016/j.brs.2012.03.006.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wiegand A, Sommer A, Nieratschker V, Plewnia C. Improvement of cognitive control and stabilization of affect by prefrontal transcranial direct current stimulation (tDCS). Sci Rep. 2019;9:6797. https://doi.org/10.1038/s41598-019-43234-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schroeder PA, Ehlis A-C, Wolkenstein L, Fallgatter AJ, Plewnia C. Emotional distraction and bodily reaction: modulation of autonomous responses by anodal tDCS to the prefrontal cortex. Front Cell Neurosci. 2015;9:482. https://doi.org/10.3389/fncel.2015.00482.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Schestatsky P, Simis M, Freeman R, Pascual-Leone A, Fregni F. Non-invasive brain stimulation and the autonomic nervous system. Clin Neurophysiol. 2013;124(9):1716–28. https://doi.org/10.1016/j.clinph.2013.03.020.

    Article  PubMed  Google Scholar 

  67. Antal A, Fischer T, Saiote C, Miller R, Chaieb L, Wang DJJ, et al. Transcranial electrical stimulation modifies the neuronal response to psychosocial stress exposure. Hum Brain Mapp. 2014;35(8):3750–9. https://doi.org/10.1002/hbm.22434.

    Article  PubMed  Google Scholar 

  68. Horvath JC, Forte JD, Carter O. Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS). Brain Stimul. 2015;8(3):535–50. https://doi.org/10.1016/j.brs.2015.01.400.

    Article  PubMed  Google Scholar 

  69. Antal A, Keeser D, Priori A, Padberg F, Nitsche MA. Conceptual and procedural shortcomings of the systematic review “evidence that transcranial direct current stimulation ( tDCS ) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: a systematic review” by Horvath and co-workers. Brain Stimul. 2015;8:27–31. https://doi.org/10.1016/j.brs.2015.05.010.

    Article  Google Scholar 

  70. Price AR, Hamilton RH. A re-evaluation of the cognitive effects from single-session transcranial direct current stimulation. Brain Stimul. 2015;8(3):663–5.

    Article  Google Scholar 

  71. Steenbergen L, Sellaro R, Hommel B, Lindenberger U, Kühn S, Colzato LS. “Unfocus” on focus: commercial tDCS headset impairs working memory. Exp Brain Res. 2015;234(3):637–43. https://doi.org/10.1007/s00221-015-4391-9.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lefaucheur JP, André-Obadia N, Antal A, Ayache SS, Baeken C, Benninger DH, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol. 2014;125(11):2150–206. https://doi.org/10.1016/j.clinph.2014.05.021.

    Article  Google Scholar 

  73. Bajbouj M, Aust S, Spies J, Herrera-Melendez AL, Mayer SV, Peters M, et al. PsychotherapyPlus: augmentation of cognitive behavioral therapy (CBT) with prefrontal transcranial direct current stimulation (tDCS) in major depressive disorder—study design and methodology of a multicenter double-blind randomized placebo-controlled tria. Eur Arch Psychiatry Clin Neurosci. 2018;268(8):797–808. https://doi.org/10.1007/s00406-017-0859-x.

    Article  PubMed  Google Scholar 

  74. Datta A, Bansal V, Diaz J, Patel J, Reato D, Bikson M. Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2009;2(4):201–7, 207.e1. https://doi.org/10.1016/j.brs.2009.03.005.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hogeveen J, Grafman J, Aboseria M, David A, Bikson M, Hauner KK. Effects of high-definition and conventional tDCS on response inhibition. Brain Stimul. 2016;9(5):720–9. https://doi.org/10.1016/j.brs.2016.04.015.

    Article  CAS  PubMed  Google Scholar 

  76. Helfrich RF, Schneider TR, Rach S, Trautmann-Lengsfeld SA, Engel AK, Herrmann CS. Entrainment of brain oscillations by transcranial alternating current stimulation. Curr Biol. 2014;24(3):333–9. https://doi.org/10.1016/j.cub.2013.12.041.

    Article  CAS  PubMed  Google Scholar 

  77. Polanía R, Nitsche MA, Korman C, Batsikadze G, Paulus W. The importance of timing in segregated theta phase-coupling for cognitive performance. Curr Biol. 2012;22(14):1314–8. https://doi.org/10.1016/j.cub.2012.05.021.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Plewnia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schroeder, P.A., Plewnia, C. (2020). Neuropsychological, Emotional, and Cognitive Investigations with Transcranial Direct Current Stimulation (TDCS). In: Dell'Osso, B., Di Lorenzo, G. (eds) Non Invasive Brain Stimulation in Psychiatry and Clinical Neurosciences. Springer, Cham. https://doi.org/10.1007/978-3-030-43356-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43356-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43355-0

  • Online ISBN: 978-3-030-43356-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics