Advertisement

A Distributed Modular Scalable and Generic Framework for Parallelizing Population-Based Metaheuristics

  • Hatem KhalloofEmail author
  • Phil Ostheimer
  • Wilfried Jakob
  • Shadi Shahoud
  • Clemens Duepmeier
  • Veit Hagenmeyer
Conference paper
  • 123 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12043)

Abstract

In the present paper, microservices, container virtualization and the publish/subscribe messaging paradigm are exploited to develop a distributed, modular, scalable and generic framework for parallelizing population-based metaheuristics. The proposed approach paves the way for an easy deployment of existing metaheuristic algorithms such as Evolutionary Algorithms (EAs) on a scalable runtime environment with full runtime automation. Furthermore, it introduces simple mechanisms to work efficiently with other components like forecasting frameworks and simulators. In order to analyze the feasibility of the design, the EA GLEAM (General Learning Evolutionary Algorithm and Method) is integrated and deployed on a cluster with 4 nodes and 128 cores for benchmarking. The overhead of the framework is measured and the obtained results show not only low values but also a small increase with growing number of computing nodes.

Keywords

Parallel EAs Microservices Virtualization Container Cluster Parallel computing Scalability Coarse-Grained Model 

References

  1. 1.
    Cantú-Paz, E.: A survey of parallel genetic algorithms. Calculateurs paralleles, reseaux et systems repartis 10(2), 141–171 (1998)Google Scholar
  2. 2.
    Khalloof, H., et al.: A generic distributed microservices and container based framework for metaheuristic optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1363–1370, ACM (2018)  https://doi.org/10.1145/3205651.3208253
  3. 3.
    Salza, P., Ferrucci, F., Sarro, F.: elephant56: design and implementation of a parallel genetic algorithms framework on Hadoop MapReduce. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, pp. 1315–1322, ACM (2016)  https://doi.org/10.1145/2908961.2931722
  4. 4.
    Biethahn, J., Nissen, V.: Evolutionary Algorithms in Management Applications. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-61217-6CrossRefzbMATHGoogle Scholar
  5. 5.
    Dasgupta, D., Michalewicz, Z.: Evolutionary Algorithms in Engineering Applications. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-662-03423-1CrossRefzbMATHGoogle Scholar
  6. 6.
    Newman, S.: Building Microservices: Designing Fine-Grained Systems. O’Reilly Media, Inc., Newton (2015)Google Scholar
  7. 7.
    Salza, P., Ferrucci, F.: An Approach for Parallel Genetic Algorithms in the Cloud using Software Containers. Computing Research Repository (CoRR), pp. 1–7 (2016)Google Scholar
  8. 8.
    Salza, P., Ferrucci, F.: Speed up genetic algorithms in the cloud using software containers. Future Gener. Comput. Syst. 92, 276–289 (2019).  https://doi.org/10.1016/j.future.2018.09.066CrossRefGoogle Scholar
  9. 9.
    Merelo Guervós, J.J., García-Valdez, J.M.: Introducing an event-based architecture for concurrent and distributed evolutionary algorithms. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11101, pp. 399–410. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-99253-2_32CrossRefGoogle Scholar
  10. 10.
    García-Valdez, M., Trujillo, L., Merelo, J.J., De Vega, F.F., Olague, G.: The EvoSpace model for pool-based evolutionary algorithms. J. Grid Comput. 13(3), 329–349 (2015).  https://doi.org/10.1007/s10723-014-9319-2CrossRefGoogle Scholar
  11. 11.
    García-Valdez, M., Merelo, J.J.: evospace-js: asynchronous pool-based execution of heterogeneous metaheuristics. Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1202–1208, ACM (2017).  https://doi.org/10.1145/3067695.3082473
  12. 12.
    Jurczuk, K., Czajkowski, M., Kretowski, M.: Multi-GPU approach for big data mining: global induction of decision trees. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 175–176, ACM, July 2019.  https://doi.org/10.1145/3319619.3322045
  13. 13.
    Jurczuk, K., Reska, D., Kretowski, M.: What are the limits of evolutionary induction of decision trees? In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 461–473. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-99259-4_37CrossRefGoogle Scholar
  14. 14.
    Jurczuk, K., Czajkowski, M., Kretowski, M.: Evolutionary induction of a decision tree for large-scale data: a GPU-based approach. Soft Comput. 21(24), 7363–7379 (2017).  https://doi.org/10.1007/s00500-016-2280-1CrossRefGoogle Scholar
  15. 15.
    Blume, C., Jakob, W.: GLEAM - an evolutionary algorithm for planning and control based on evolution strategy. In: GECCO Late Breaking Papers, pp. 31–38 (2002)Google Scholar
  16. 16.
    Jakob, W.: A general cost-benefit-based adaptation framework for multimeme algorithms. Memetic Comput. 2(3), 20–218 (2010).  https://doi.org/10.1007/s12293-010-0040-9CrossRefGoogle Scholar
  17. 17.
    Herrera, F., Lozano, M., Moraga, C.: Hierarchical distributed genetic algorithms. Int. J. Intell. Syst. 14(11), 1099–1121 (1999).  https://doi.org/10.1002/(sici)1098-111x(199911)14:11<1099::aid-int3>3.0.co;2-oCrossRefzbMATHGoogle Scholar
  18. 18.
    Rastrigin, L.A.: Systems of Extremal Control. Mir, Moscow (1974)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hatem Khalloof
    • 1
    Email author
  • Phil Ostheimer
    • 1
  • Wilfried Jakob
    • 1
  • Shadi Shahoud
    • 1
  • Clemens Duepmeier
    • 1
  • Veit Hagenmeyer
    • 1
  1. 1.Institute of Automation and Applied Informatics (IAI), Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations