Advertisement

Performance Optimizations for Parallel Modeling of Solidification with Dynamic Intensity of Computation

  • Kamil HalbiniakEmail author
  • Lukasz Szustak
  • Adam Kulawik
  • Pawel Gepner
Conference paper
  • 142 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12043)

Abstract

In our previous works, a parallel application dedicated to the numerical modeling of alloy solidification was developed and tested using various programming environments on hybrid shared-memory platforms with multicore CPUs and manycore Intel Xeon Phi accelerators. While this solution allows obtaining a reasonable good performance in the case of the static intensity of computations, the performance results achieved for the dynamic intensity of computations indicates pretty large room for further optimizations.

In this work, we focus on improving the overall performance of the application with the dynamic computational intensity. For this aim, we propose to modify the application code significantly using the loop fusion technique. The proposed method permits us to execute all kernels in a single nested loop, as well as reduce the number of conditional operators performed within a single time step. As a result, the proposed optimizations allows increasing the application performance for all tested configurations of computing resources. The highest performance gain is achieved for a single Intel Xeon SP CPU, where the new code yields the speedup of up to 1.78 times against the original version.

The developed method is vital for further optimizations of the application performance. It allows introducing an algorithm for the dynamic workload prediction and load balancing in successive time steps of simulation. In this work, we propose the workload prediction algorithm with 1D computational map.

Keywords

Numerical modeling of solidification Phase-field method Parallel programming OpenMP Workload prediction Load balancing Intel Xeon Phi Intel Xeon Scalable processors 

Notes

Acknowledgments

This research was conducted with the financial support of the National Science Centre (Poland) under grants no. UMO-2017/26/D/ST6/00687. The authors are grateful to: (i) Intel Technology Poland and (ii) Czestochowa University of Technology (MICLAB project no. POIG.02.03.00.24-093/13) for granting access to HPC platforms.

References

  1. 1.
    Adrian, H., Spiradek-Hahn, K.: The simulation of dendritic growth in Ni-Cu alloy using the phase field model. Arch. Mater. Sci. Eng. 40(2), 89–93 (2009)Google Scholar
  2. 2.
    Benito, J.J., Ureñ, F., Gavete, L.: The generalized finite difference method. In: Àlvarez, M.P. (ed.) Leading-Edge Applied Mathematical Modeling Research, pp. 251–293. Nova Science Publishers, New York (2008)Google Scholar
  3. 3.
    Folch, R., Casademunt, J., Hernandez-Machado, A., Ramirez-Piscina, L.: Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast. II. Numerical study. Phys. Rev. E 60(2), 1734–1740 (1999)CrossRefGoogle Scholar
  4. 4.
    Halbiniak, K., Wyrzykowski, R., Szustak, L., Olas, T.: Assessment of offload-based programming environments for hybrid CPU-MIC platforms in numerical modeling of solidification. Simul. Model. Pract. Theory 87, 48–72 (2018)CrossRefGoogle Scholar
  5. 5.
    Karma, A., Kessler, D., Levine, H.: Phase-field model of mode III dynamic fracture. Phys. Rev. Lett. 87(4), 045501 (2001).  https://doi.org/10.1103/PhysRevLett.87.045501CrossRefGoogle Scholar
  6. 6.
    Kulawik, A.: The modeling of the phenomena of the heat treatment of the medium carbon steel. Wydawnictwo Politechnki Czestochowskiej, (281) (2013). (in Polish)Google Scholar
  7. 7.
    Provatas, N., Elder, K.: Phase-Field Methods in Materials Science and Engineering. Wiley, Weinheim (2010)CrossRefGoogle Scholar
  8. 8.
    Shimokawabe, T., et al.: Peta-scale phase-field simulation for dendritic solidification on the TSUBAME 2.0 supercomputer. In: Proceedings of the 2011 ACM/IEEE International Conference on High Performance Computing, Networking, Storage and Analysis, SC 2011. IEEE Computer Society (2011).  https://doi.org/10.1145/2063384.2063388
  9. 9.
    Steinbach, I.: Phase-field models in materials science. Model. Simul. Mater. Sci. Eng. 17(7), 073001 (2009).  https://doi.org/10.1088/0965-0393/17/7/073001CrossRefGoogle Scholar
  10. 10.
    Szustak, L., Halbiniak, K., Kulawik, A., Wrobel, J., Gepner, P.: Toward parallel modeling of solidification based on the generalized finite difference method using Intel Xeon Phi. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9573, pp. 411–422. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-32149-3_39CrossRefGoogle Scholar
  11. 11.
    Szustak, L., Rojek, K., Olas, T., Kuczynski, L., Halbiniak, K., Gepner, P.: Adaptation of MPDATA heterogeneous stencil computation to Intel Xeon Phi coprocessor. Sci. Prog. (2015).  https://doi.org/10.1155/2015/642705CrossRefGoogle Scholar
  12. 12.
    Szustak, L., Halbiniak, K., Kuczynski, L., Wrobel, J., Kulawik, A.: Porting and optimization of solidification application for CPU-MIC hybrid platforms. Int. J. High Perform. Comput. Appl. 32(4), 523–539 (2018)CrossRefGoogle Scholar
  13. 13.
    Takaki, T.: Phase-field modeling and simulations of dendrite growth. ISIJ Int. 54(2), 437–444 (2014)CrossRefGoogle Scholar
  14. 14.
    Warren, J.A., Boettinger, W.J.: Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method. Acta Metall. Mater. 43(2), 689–703 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Czestochowa University of TechnologyCzestochowaPoland
  2. 2.Intel CorporationSanta ClaraUSA

Personalised recommendations