The MPFI Library: Towards IEEE 1788–2015 Compliance

(In Memoriam Dmitry Nadezhin)
  • Nathalie RevolEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12044)


The IEEE 1788–2015 has standardized interval arithmetic. However, few libraries for interval arithmetic are compliant with this standard. In the first part of this paper, the main features of the IEEE 1788–2015 standard are detailed, namely the structure into 4 levels, the possibility to accomodate a new mathematical theory of interval arithmetic through the notion of flavor, and the mechanism of decoration for handling exceptions. These features were not present in the libraries developed prior to the elaboration of the standard. MPFI is such a library: it is a C library, based on MPFR, for arbitrary precision interval arithmetic. MPFI is not (yet) compliant with the IEEE 1788–2015 standard for interval arithmetic: the planned modifications are presented. Some considerations about performance and HPC on interval computations based on this standard, or on MPFI, conclude the paper.


Interval arithmetic IEEE 1788–2015 standard MPFI library Compliance 


  1. 1.
    Alefeld, G., Herzberger, J.: Introduction to Interval Analysis. Academic Press, Cambridge (1983)zbMATHGoogle Scholar
  2. 2.
    Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: a multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13-es (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Goldsztejn, A.: Modal intervals revisited, part 1: a generalized interval natural extension. Reliable Comput. 16, 130–183 (2012)MathSciNetGoogle Scholar
  4. 4.
    Goldsztejn, A.: Modal intervals revisited, part 2: a generalized interval mean value extension. Reliable Comput. 16, 184–209 (2012)MathSciNetGoogle Scholar
  5. 5.
    Graillat, S., Jeangoudoux, C., Lauter, C.: MPDI: a decimal multiple-precision interval arithmetic library. Reliable Comput. 25, 38–52 (2017)MathSciNetGoogle Scholar
  6. 6.
    Hansen, E.R.: Global Optimization Using Interval Analysis. Marcel Dekker, New York (1992)zbMATHGoogle Scholar
  7. 7.
    Heimlich, O.: Interval arithmetic in GNU Octave. In: SWIM 2016: Summer Workshop on Interval Methods, France (2016)Google Scholar
  8. 8.
    IEEE: Institute of Electrical and Electronic Engineers: 754–1985 - IEEE Standard for Binary Floating-Point Arithmetic. IEEE Computer Society (1985)Google Scholar
  9. 9.
    IEEE: Institute of Electrical and Electronic Engineers: 754–2008 - IEEE Standard for Floating-Point Arithmetic. IEEE Computer Society (2008)Google Scholar
  10. 10.
    IEEE: Institute of Electrical and Electronic Engineers: 1788–2015 - IEEE Standard for Interval Arithmetic. IEEE Computer Society (2015)Google Scholar
  11. 11.
    Kahan, W.: How Futile are Mindless Assessments of Roundoff in Floating-Point Computation? (2006).
  12. 12.
    Kaucher, E.: Interval analysis in the extended interval space IR. Comput. Supplementa 2(1), 33–49 (1980). Scholar
  13. 13.
    Kearfott, R.B., Nakao, M.T., Neumaier, A., Rump, S.M., Shary, S.P., van Hentenryck, P.: Standardized notation in interval analysis. Comput. Technol. 15(1), 7–13 (2010)zbMATHGoogle Scholar
  14. 14.
    Kearfott, R.B.: An overview of the upcoming IEEE P-1788 working group document: standard for interval arithmetic. In: IFSA/NAFIPS, pp. 460–465. IEEE, Canada (2013)Google Scholar
  15. 15.
    Moore, R.E.: Interval Analysis. Prentice Hall, Englewood Cliffs (1966)zbMATHGoogle Scholar
  16. 16.
    Moore, R.E.: Methods and Applications of Interval Analysis. SIAM Studies in Applied Mathematics, Philadelphia (1979)CrossRefGoogle Scholar
  17. 17.
    Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM, Philadelphia (2009)CrossRefGoogle Scholar
  18. 18.
    Nadezhin, D.Y., Zhilin, S.I.: Jinterval library: principles, development, and perspectives. Reliable Comput. 19(3), 229–247 (2014)MathSciNetGoogle Scholar
  19. 19.
    Nehmeier, M.: libieeep1788: A C++ Implementation of the IEEE interval standard P1788. In: Norbert Wiener in the 21st Century, pp. 1–6, IEEE, Australia (2014)Google Scholar
  20. 20.
    Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  21. 21.
    Pryce, J.: The forthcoming IEEE standard 1788 for interval arithmetic. In: Nehmeier, M., Wolff von Gudenberg, J., Tucker, W. (eds.) SCAN 2015. LNCS, vol. 9553, pp. 23–39. Springer, Cham (2016). Scholar
  22. 22.
    Ratz, D.: Inclusion Isotone Extended Interval Arithmetic. Report 5 (96 pages). Institut für Angewandte Mathematik, Universität Karlsruhe (1996)Google Scholar
  23. 23.
    Revol, N., Denneulin, Y., Méhaut, J.-F., Planquelle, B.: Parallelization of continuous verified global optimization. In: 19th IFIP TC7 Conference on System Modelling and Optimization, Cambridge, United Kingdom (1999)Google Scholar
  24. 24.
    Revol, N., Rouillier, F.: Motivations for an arbitrary precision interval arithmetic and the MPFI library. Reliable Comput. 11(4), 275–290 (2005)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Revol, N.: Introduction to the IEEE 1788-2015 standard for interval arithmetic. In: Abate, A., Boldo, S. (eds.) NSV 2017. LNCS, vol. 10381, pp. 14–21. Springer, Cham (2017). Scholar
  26. 26.
    Rump, S.M.: Verification methods: rigorous results using floating-point arithmetic. Acta Numerica 19, 287–449 (2010)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Sunaga, T.: Geometry of Numerals. Master thesis, U. Tokyo, Japan (1956)Google Scholar
  28. 28.
    Théveny, P.: Numerical Quality and High Performance In Interval Linear Algebra on Multi-Core Processors. PhD thesis, ENS Lyon, France (2014)Google Scholar
  29. 29.
    Tucker, W.: Validated Numerics - A Short Introduction to Rigorous Computations. Princeton University Press, Princeton (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of Lyon - Inria, LIP - ENS de LyonLyonFrance

Personalised recommendations