Advertisement

Simple Preconditioner for a Thin Membrane Diffusion Problem

  • Piotr KrzyżanowskiEmail author
Conference paper
  • 109 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12044)

Abstract

A diffusion through a thin membrane problem discussed in [13] is discretized with a variant of the composite h-p discontinuous Galerkin method. A preconditioner based on the additive Schwarz method is introduced, and its convergence properties are investigated in numerical experiments.

Keywords

Preconditioner Thin membrane Additive Schwarz method Discontinuous Galerkin 

Notes

Acknowledgement

The author would like to thank two anonymous referees whose comments and remarks helped to improve the paper. This research has been partially supported by the Polish National Science Centre grant 2016/21/B/ST1/00350.

References

  1. 1.
    Alnæs, M.S., et al.: The FEniCS project version 1.5. Arch. Numer. Softw. 3(100) (2015).  https://doi.org/10.11588/ans.2015.100.20553
  2. 2.
    Antonietti, P.F., Houston, P.: A class of domain decomposition preconditioners for \(hp\)-discontinuous Galerkin finite element methods. J. Sci. Comput.46(1), 124–149 (2011).  https://doi.org/10.1007/s10915-010-9390-1
  3. 3.
    Antonietti, P.F., Sarti, M., Verani, M., Zikatanov, L.T.: A uniform additive Schwarz preconditioner for high-order discontinuous Galerkin approximations of elliptic problems. J. Sci. Comput. 70(2), 608–630 (2017).  https://doi.org/10.1007/s10915-016-0259-9
  4. 4.
    Balay, S., et al.: PETSc users manual. Technical report ANL-95/11 - revision 3.8, Argonne National Laboratory (1995). http://www.mcs.anl.gov/petsc
  5. 5.
    Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods, Mathématiques & Applications, vol. 69. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-22980-0. (Berlin) [Mathematics & Applications]
  6. 6.
    Dryja, M.: On discontinuous Galerkin methods for elliptic problems with discontinuous coefficients. Comput. Methods Appl. Math. 3(1), 76–85 (2003). (electronic)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dryja, M., Krzyżanowski, P.: A massively parallel nonoverlapping additive Schwarz method for discontinuous Galerkin discretization of elliptic problems. Num. Math. 132(2), 347–367 (2015). https://doi.org/10.1007/s00211-015-0718-5
  8. 8.
    Ern, A., Stephansen, A.F., Zunino, P.: A discontinuous Galerkin method with weighted averages for advection-diffusion equations with locally small and anisotropic diffusivity. IMA J. Numer. Anal. 29(2), 235–256(2009).  https://doi.org/10.1093/imanum/drm050
  9. 9.
    Krzyżanowski, P.: On a nonoverlapping additive Schwarz method for \(h\)-\(p\) discontinuous Galerkin discretization of elliptic problems. Numer. Meth. PDEs 32(6), 1572–1590 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Krzyżanowski, P.: Nonoverlapping three grid additive Schwarz for hp-DGFEM with discontinuous coefficients. In: Bjørstad, P.E., et al. (eds.) DD 2017. LNCSE, vol. 125, pp. 455–463. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-93873-8_43CrossRefGoogle Scholar
  11. 11.
    Mathew, T.: Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations. LNCSE, 1st edn. Springer, Berlin (2008).  https://doi.org/10.1007/978-3-540-77209-5CrossRefzbMATHGoogle Scholar
  12. 12.
    Pavarino, L.F.: Additive Schwarz methods for the p-version finite element method. Numerische Mathematik 66(1), 493–515 (1993).  https://doi.org/10.1007/BF01385709
  13. 13.
    Sturrock, M., Terry, A.J., Xirodimas, D.P., Thompson, A.M., Chaplain, M.A.J.: Influence of the nuclear membrane, active transport, and cell shape on the Hes1 and p53–Mdm2 pathways: insights from spatio-temporal modelling. Bull. Math. Biol. 74(7), 1531–1579 (2012).  https://doi.org/10.1007/s11538-012-9725-1
  14. 14.
    Toselli, A., Widlund, O.: Domain Decomposition Methods–Algorithms and Theory. SSCM, vol. 34. Springer, Berlin (2005).  https://doi.org/10.1007/b137868CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of WarsawWarsawPoland

Personalised recommendations