Skip to main content

Overview of Application Instrumentation for Performance Analysis and Tuning

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2019)

Abstract

Profiling and tuning of parallel applications is an essential part of HPC. Analysis and improvement of the hot spots of an application can be done using one of many available tools, that provides measurement of resources consumption for each instrumented part of the code. Since complex applications show different behavior in each part of the code, it is desired to insert instrumentation to separate these parts.

Besides manual instrumentation, some profiling libraries provide different ways of instrumentation. Out of these, the binary patching is the most universal mechanism, that highly improves user-friendliness and robustness of the tool. We provide an overview of the most often used binary patching tools and show a workflow of how to use them to implement a binary instrumentation tool for any profiler or autotuner. We have also evaluated the minimum overhead of the manual and binary instrumentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    OpenHPC project list of performance analysis tools besides mentioned libraries contain tools without API (e.g. visualization libraries) and also PAPI [26].

References

  1. Asanovic, K., et al.: The landscape of parallel computing research: a view from Berkeley. Technical report UCB/EECS-2006-183, EECS Department, University of California, Berkeley, December 2006. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

  2. Barthou, D., Charif Rubial, A., Jalby, W., Koliai, S., Valensi, C.: Performance tuning of x86 OpenMP codes with MAQAO. In: Müller, M.S., Resch, M.M., Schulz, A., Nagel, W.E. (eds.) Tools for High Performance Computing 2009, pp. 95–113. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11261-4_7

    Chapter  Google Scholar 

  3. Bernat, A.R., Miller, B.P.: Anywhere, any-time binary instrumentation. In: Proceedings of the 10th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools. PASTE 2011, pp. 9–16. ACM, New York (2011). https://doi.org/10.1145/2024569.2024572

  4. Bruening, D., Zhao, Q., Amarasinghe, S.: Transparent dynamic instrumentation. In: Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on Virtual Execution Environments. VEE 2012, pp. 133–144. ACM, New York (2012). https://doi.org/10.1145/2151024.2151043

  5. Cesarini, D., Bartolini, A., Bonfà, P., Cavazzoni, C., Benini, L.: COUNTDOWN - three, two, one, low power! A run-time library for energy saving in MPI communication primitives. CoRR abs/1806.07258 (2018). http://arxiv.org/abs/1806.07258

  6. Eastep, J., et al.: Global extensible open power manager: a vehicle for HPC community collaboration on co-designed energy management solutions. In: Kunkel, J.M., Yokota, R., Balaji, P., Keyes, D. (eds.) ISC 2017. LNCS, vol. 10266, pp. 394–412. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58667-0_21

    Chapter  Google Scholar 

  7. Geimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr, B.: The scalasca performance toolset architecture. Concurr. Comput.: Pract. Exp. 22(6), 702–719 (2010). https://doi.org/10.1002/cpe.v22:6

    Article  Google Scholar 

  8. Gerndt, M., Cesar, E., Benkner, S.: Automatic tuning of HPC applications - the periscope tuning framework (PTF). In: Automatic Tuning of HPC Applications - The Periscope Tuning Framework (PTF). Shaker Verlag (2015). http://eprints.cs.univie.ac.at/4556/

  9. Gholkar, N., Mueller, F., Rountree, B.: Power tuning HPC jobs on power-constrained systems. In: Proceedings of the 2016 International Conference on Parallel Architectures and Compilation. PACT 2016, pp. 179–191. ACM, New York (2016). https://doi.org/10.1145/2967938.2967961

  10. Graham, S.L., Kessler, P.B., McKusick, M.K.: Gprof: A call graph execution profiler. SIGPLAN Not. 39(4), 49–57 (2004). https://doi.org/10.1145/989393.989401

    Article  Google Scholar 

  11. Hackenberg, D., et al.: HDEEM: high definition energy efficiency monitoring. In: 2014 Energy Efficient Supercomputing Workshop, pp. 1–10, November 2014. https://doi.org/10.1109/E2SC.2014.13

  12. Hähnel, M., Döbel, B., Völp, M., Härtig, H.: Measuring energy consumption for short code paths using RAPL. SIGMETRICS Perform. Eval. Rev. 40(3), 13–17 (2012). https://doi.org/10.1145/2425248.2425252

    Article  Google Scholar 

  13. Haidar, A., Jagode, H., Vaccaro, P., YarKhan, A., Tomov, S., Dongarra, J.: Investigating power capping toward energy-efficient scientific applications. Concurr. Comput.: Pract. Exp. 31(6), e4485 (2019). https://doi.org/10.1002/cpe.4485

    Article  Google Scholar 

  14. IT4Innovations: MERIC library. https://code.it4i.cz/vys0053/meric. Accessed 21 Apr 2019

  15. Laurenzano, M.A., Tikir, M.M., Carrington, L., Snavely, A.: PEBIL: efficient static binary instrumentation for Linux. In: 2010 IEEE International Symposium on Performance Analysis of Systems Software (ISPASS), pp. 175–183, March 2010. https://doi.org/10.1109/ISPASS.2010.5452024

  16. Luk, C.K., et al.: Pin: building customized program analysis tools with dynamic instrumentation. In: Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design and Implementation. PLDI 2005, pp. 190–200. ACM, New York (2005). https://doi.org/10.1145/1065010.1065034

  17. Müller, M.S., et al.: Developing scalable applications with Vampir, VampirServer and VampirTrace. In: PARCO (2007)

    Google Scholar 

  18. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary instrumentation. SIGPLAN Not. 42(6), 89–100 (2007). https://doi.org/10.1145/1273442.1250746

    Article  Google Scholar 

  19. OpenHPC: Community building blocks for HPC systems. https://openhpc.community/. Accessed 21 Apr 2019

  20. READEX: Horizon 2020 READEX project (2018). https://www.readex.eu

  21. Roth, P.C., Meredith, J.S., Vetter, J.S.: Automated characterization of parallel application communication patterns. In: Proceedings of the 24th International Symposium on High-Performance Parallel and Distributed Computing. HPDC 2015, pp. 73–84. ACM, New York (2015). https://doi.org/10.1145/2749246.2749278

  22. Rountree, B., Lowenthal, D.K., de Supinski, B.R., Schulz, M., Freeh, V.W., Bletsch, T.K.: Adagio: making DVS practical for complex HPC applications. In: Proceedings of the 23rd International Conference on Supercomputing. ICS 2009, pp. 460–469. ACM, New York (2009). https://doi.org/10.1145/1542275.1542340

  23. Schuchart, J., et al.: The READEX formalism for automatic tuning for energy efficiency. Computing 99(8), 727–745 (2017). https://doi.org/10.1007/s00607-016-0532-7

    Article  MathSciNet  Google Scholar 

  24. Servat, H., Llort, G., Huck, K., Giménez, J., Labarta, J.: Framework for a productive performance optimization. Parallel Comput. 39(8), 336–353 (2013). https://doi.org/10.1016/j.parco.2013.05.004, http://www.sciencedirect.com/science/article/pii/S0167819113000707

  25. Shende, S.S., Malony, A.D.: The TAU parallel performance system. Int. J. High Perform. Comput. Appl. 20(2), 287–311 (2006). https://doi.org/10.1177/1094342006064482

    Article  Google Scholar 

  26. Terpstra, D., Jagode, H., You, H., Dongarra, J.: Collecting performance data with PAPI-C. In: Müller, M.S., Resch, M.M., Schulz, A., Nagel, W.E. (eds.) Tools for High Performance Computing 2009, pp. 157–173. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11261-4_11

    Chapter  Google Scholar 

  27. Treibig, J., Hager, G., Wellein, G.: LIKWID: lightweight performance tools. In: Bischof, C., Hegering, H.G., Nagel, W.E., Wittum, G. (eds.) Competence in High Performance Computing 2010, pp. 165–175. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24025-6_14

    Chapter  Google Scholar 

  28. Valensi, C.: A generic approach to the definition of low-level components for multi-architecture binary analysis. Ph.D. thesis, Université de Versailles Saint-Quentin-en-Yvelines, July 2014

    Google Scholar 

  29. Vysocky, O., et al.: Evaluation of the HPC applications dynamic behavior in terms of energy consumption. In: Proceedings of the Fifth International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering, pp. 1–19 (2017). https://doi.org/10.4203/ccp.111.3. Paper 3, 2017

Download references

Acknowledgment

This work was supported by The Ministry of Education, Youth and Sports from the Large Infrastructures for Research, Experimental Development and Innovations project IT4Innovations National Supercomputing Center LM2015070. This work was supported by the Moravian-Silesian Region from the programme “Support of science and research in the Moravian-Silesian Region 2017” (RRC/10/2017). This work was also partially supported by the SGC grant No. SP2019/59 “Infrastructure research and development of HPC libraries and tools”, VŠB - Technical University of Ostrava, Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondrej Vysocky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vysocky, O., Riha, L., Bartolini, A. (2020). Overview of Application Instrumentation for Performance Analysis and Tuning. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2019. Lecture Notes in Computer Science(), vol 12044. Springer, Cham. https://doi.org/10.1007/978-3-030-43222-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43222-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43221-8

  • Online ISBN: 978-3-030-43222-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics