Security and Storage Issues in Internet of Floating Things Edge-Cloud Data Movement

  • Raffaele MontellaEmail author
  • Diana Di Luccio
  • Sokol Kosta
  • Aniello Castiglione
  • Antonio Maratea
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12044)


Sensors and actuators became first class citizens in technologically pervasive urban environments. However, the full potential of data crowdsourcing is still unexploited in marine coastal areas, due to the challenging operational conditions, extremely unstable network connectivity and security issues in data movement. In this paper, we present the latest specification of our DYNAMO Transfer Protocol (DTP), a platform-independent data mover framework specifically designed for the Internet of Floating Things applications, where data collected on board of professional or leisure vessels are stored locally and then moved from the edge to the cloud. We evaluate the performance achieved by the DTP in data movement in a controlled environment.


Internet of Floating Things Data crowdsourcing Data movement Security Cloud database 



This research was supported by the research project “DYNAMO: Distributed leisure Yacht-carried sensor-Network for Atmosphere and Marine data crOwdsourcing applications” (DSTE373) and it is partially included in the framework of the project “MOQAP - Maritime Operation Quality Assurance Platform” and financed by Italian Ministry of Economic Development.


  1. 1.
    Ascione, I., Giunta, G., Mariani, P., Montella, R., Riccio, A.: A grid computing based virtual laboratory for environmental simulations. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006. LNCS, vol. 4128, pp. 1085–1094. Springer, Heidelberg (2006). Scholar
  2. 2.
    Aulicino, G., et al.: Sea surface salinity and temperature in the Southern Atlantic Ocean from South African Icebreakers, 2010–2017. Earth Syst. Sci. Data 10(3), 1227–1236 (2018)CrossRefGoogle Scholar
  3. 3.
    Benassai, G., Di Luccio, D., Corcione, V., Nunziata, F., Migliaccio, M.: Marine spatial planning using high-resolution synthetic aperture radar measurements. IEEE J. Oceanic Eng. 43(3), 586–594 (2018)CrossRefGoogle Scholar
  4. 4.
    Benassai, G., Di Luccio, D., Migliaccio, M., Cordone, V., Budillon, G., Montella, R.: High resolution remote sensing data for environmental modelling: some case studies. In: 2017 IEEE 3rd International Forum on Research and Technologies for Society and Industry (RTSI), pp. 1–5. IEEE (2017)Google Scholar
  5. 5.
    Bormann, C., Castellani, A.P., Shelby, Z.: CoAP: an application protocol for billions of tiny internet nodes. IEEE Internet Comput. 16(2), 62–67 (2012)CrossRefGoogle Scholar
  6. 6.
    Botta, A., De Donato, W., Persico, V., Pescapé, A.: On the integration of cloud computing and Internet of Things. In: 2014 International Conference on Future Internet of Things and Cloud (FiCloud), pp. 23–30. IEEE (2014)Google Scholar
  7. 7.
    Di Paola, G., Aucelli, P.P.C., Benassai, G., Rodríguez, G.: Coastal vulnerability to wave storms of sele littoral plain (Southern Italy). Nat. Hazards 71(3), 1795–1819 (2014)CrossRefGoogle Scholar
  8. 8.
    D’Amore, L., Mele, V., Laccetti, G., Murli, A.: Mathematical approach to the performance evaluation of matrix multiply algorithm. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9574, pp. 25–34. Springer, Cham (2016). Scholar
  9. 9.
    Fortino, G., Trunfio, P. (eds.): Internet of Things Based on Smart Objects. IT. Springer, Cham (2014). Scholar
  10. 10.
    Foster, I.: Globus online: accelerating and democratizing science through cloud-based services. IEEE Internet Comput. 15(3), 70–73 (2011)CrossRefGoogle Scholar
  11. 11.
    Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure under the RSA assumption. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 260–274. Springer, Heidelberg (2001). Scholar
  12. 12.
    Garcia-Molina, H., Joglekar, M., Marcus, A., Parameswaran, A., Verroios, V.: Challenges in data crowdsourcing. IEEE Trans. Knowl. Data Eng. 28(4), 901–911 (2016)CrossRefGoogle Scholar
  13. 13.
    Giunta, G., Montella, R., Mariani, P., Riccio, A.: Modeling and computational issues for air/water quality problems: a grid computing approach. Nuovo Cimento C Geophys. Space Phys. C 28, 215 (2005)Google Scholar
  14. 14.
    Heipke, C.: Crowdsourcing geospatial data. ISPRS J. Photogrammetry Remote Sens. 65(6), 550–557 (2010)CrossRefGoogle Scholar
  15. 15.
    Hunkeler, U., Truong, H.L., Stanford-Clark, A.: MQTT-S–a publish/subscribe protocol for wireless sensor networks. In: 3rd International Conference on Communication Systems Software and Middleware and Workshops, pp. 791–798. IEEE (2008)Google Scholar
  16. 16.
    Laccetti, G., Lapegna, M., Mele, V.: A loosely coordinated model for heap-based priority queues in multicore environments. Int. J. Parallel Prog. 44(4), 901–921 (2016)CrossRefGoogle Scholar
  17. 17.
    Mangoni, O., et al.: Phytoplankton blooms during austral summer in the Ross Sea, Antarctica: driving factors and trophic implications. PLoS ONE 12(4), e0176033 (2017)CrossRefGoogle Scholar
  18. 18.
    Maratea, A., Gaglione, S., Angrisano, A., Salvi, G., Nunziata, A.: Non parametric and robust statistics for indoor distance estimation through BLE. In: 2018 IEEE International Conference on Environmental Engineering (EE), pp. 1–6, March 2018.
  19. 19.
    Marcellino, L., et al.: Using GPGPU accelerated interpolation algorithms for marine bathymetry processing with on-premises and cloud based computational resources. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds.) PPAM 2017. LNCS, vol. 10778, pp. 14–24. Springer, Cham (2018). Scholar
  20. 20.
    Misic, C., Harriague, A.C., Mangoni, O., Aulicino, G., Castagno, P., Cotroneo, Y.: Effects of physical constraints on the lability of POM during summer in the Ross Sea. J. Mar. Syst. 166, 132–143 (2017)CrossRefGoogle Scholar
  21. 21.
    Montella, R., Di Luccio, D., Kosta, S., Giunta, G., Foster, I.: Performance, resilience, and security in moving data from the Fog to the Cloud: the DYNAMO transfer framework approach. In: Xiang, Y., Sun, J., Fortino, G., Guerrieri, A., Jung, J.J. (eds.) IDCS 2018. LNCS, vol. 11226, pp. 197–208. Springer, Cham (2018). Scholar
  22. 22.
    Montella, R., et al.: Processing of crowd-sourced data from an internet of floating things. In: 12th Workshop on Workflows in Support of Large-Scale Science, p. 8. ACM (2017)Google Scholar
  23. 23.
    Montella, R., Di Luccio, D., Troiano, P., Riccio, A., Brizius, A., Foster, I.: WaComM: a parallel water quality community model for pollutant transport and dispersion operational predictions. In: 2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), pp. 717–724. IEEE (2016)Google Scholar
  24. 24.
    Montella, R., Kosta, S., Foster, I.: DYNAMO: distributed leisure yacht-carried sensor-network for atmosphere and marine data crowdsourcing applications. In: 2018 IEEE International Conference on Cloud Engineering (IC2E), pp. 333–339. IEEE (2018)Google Scholar
  25. 25.
    Montella, R., Ruggieri, M., Kosta, S.: A fast, secure, reliable, and resilient data transfer framework for pervasive IoT applications. In: IEEE INFOCOM 2018-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 710–715. IEEE (2018)Google Scholar
  26. 26.
    Paw, J.N., Thia-Eng, C.: Climate changes and sea level rise: implications on coastal area utilization and management in South-East Asia. Ocean Shorel. Manag. 15(3), 205–232 (1991)CrossRefGoogle Scholar
  27. 27.
    Rivaro, P., et al.: Analysis of physical and biogeochemical control mechanisms onsummertime surface carbonate system variability in the western Ross Sea (Antarctica) using in situ and satellite data. Remote Sens. 11(3), 238 (2019)CrossRefGoogle Scholar
  28. 28.
    Scott, K.L., Burleigh, S.: Bundle protocol specification. RFC 5050, RFC Editor, November 2007.
  29. 29.
    Sedaghat, L., Hersey, J., McGuire, M.P.: Detecting spatio-temporal outliers in crowdsourced bathymetry data. In: 2nd ACM SIGSPATIAL International Workshop on Crowdsourced and Volunteered Geographic Information, pp. 55–62. ACM (2013)Google Scholar
  30. 30.
    Small, C., Gornitz, V., Cohen, J.E.: Coastal hazards and the global distribution of human population. Environ. Geosci. 7(1), 3–12 (2000)CrossRefGoogle Scholar
  31. 31.
    Thangavel, D., Ma, X., Valera, A., Tan, H.X., Tan, C.K.Y.: Performance evaluation of MQTT and CoAP via a common middleware. In: IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), pp. 1–6. IEEE (2014)Google Scholar
  32. 32.
    Turner, A.: Introduction to Neogeography. O’Reilly Media Inc., Sebastopol (2006)Google Scholar
  33. 33.
    Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research challenges. J. Internet Serv. Appl. 1(1), 7–18 (2010)CrossRefGoogle Scholar
  34. 34.
    Zhou, J., Cao, Z., Dong, X., Vasilakos, A.V.: Security and privacy for cloud-based IoT: challenges. IEEE Commun. Mag. 55(1), 26–33 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Raffaele Montella
    • 1
    Email author
  • Diana Di Luccio
    • 1
  • Sokol Kosta
    • 2
  • Aniello Castiglione
    • 1
  • Antonio Maratea
    • 1
  1. 1.Department of Science and TechnologiesUniversity of Naples ParthenopeNaplesItaly
  2. 2.Department of Electronic SystemsAalborg UniversityCopenhagenDenmark

Personalised recommendations