Enabling Heterogeneous 5G Simulations with SDN Adapters

  • Thien PhamEmail author
  • Jeremy McMahon
  • Hung Nguyen
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 309)


5G networks are expected to consist of multiple radio access technologies with a Software-defined networking (SDN) core, and so simulating these networks will require connecting multiple subnetworks with different technologies. Despite the availability of simulators for various technologies, there is currently no tool that can simulate a complete heterogeneous 5G network. In this work, we develop a novel SDN adapter to enable seamless inter-working between different simulation/emulation tools, such as NS-3, Mininet-WiFi, Omnet++, and OpenAirInterface5G. Using the adapter, we have built a large scale 5G simulator with multiple networking technologies by connecting existing simulators. We show that our adapter solution is easy-to-use, scalable, and can be used to connect arbitrary simulation tools. Using our solution, we show that Mininet-WiFi exhibits unreliable behaviour when connected to other networks. We compare our solution against other alternatives and show that our solution is superior both in terms of performance and cost. Finally, and for the first time, we simulate a large heterogeneous 5G network with all of the latest technologies using only a standard commodity personal computer.


Simulation Cross domain Interoperability Network slicing SDN NFV LTE 5G NR 


  1. 1.
    GitHub - cisco/open-nFAPI: An open source implementation of the Small Cell Forum’s Network Functional API (nFAPI).
  2. 2.
  3. 3.
    Ryu SDN Framework.
  4. 4.
  5. 5.
  6. 6.
    IEEE Standard for Distributed Interactive Simulation-Application Protocols. IEEE STD 1278.1-2012 (Revision of IEEE STD 1278.1-1995), pp. 1–747, December 2012.
  7. 7.
    Alaya, M.B., Banouar, Y., Monteil, T., Chassot, C., Drira, K.: OM2M: extensible ETSI-compliant M2M service platform with self-configuration capability. Procedia Comput. Sci. 32, 1079–1086 (2014). Scholar
  8. 8.
    Banjar, A., Pupatwibul, P., Braun, R., Moulton, B.: Analysing the performance of the OpenFlow standard for software-defined networking using the OMNeT++; network simulator. In: 2014 Asia-Pacific Conference on Computer Aided System Engineering (APCASE), pp. 31–37, February 2014Google Scholar
  9. 9.
    Chaves, L.J., Garcia, I.C., Madeira, E.R.M.: OFSwitch13: enhancing Ns-3 with OpenFlow 1.3 support. In: Proceedings of the Workshop on Ns-3, WNS3 2016, pp. 33–40. ACM, New York (2016)Google Scholar
  10. 10.
    Emmerich, P., Gallenmüller, S., Raumer, D., Wohlfart, F., Carle, G.: MoonGen: a scriptable high-speed packet generator. In: Proceedings of the 2015 ACM Conference on Internet Measurement Conference - IMC 2015, pp. 275–287 (2015). arXiv:1410.3322
  11. 11.
    Emmerich, P., Raumer, D., Gallenmüller, S., Wohlfart, F., Carle, G.: Throughput and latency of virtual switching with open vSwitch: a quantitative analysis. J. Netw. Syst. Manag. 26(2), 314–338 (2018). Scholar
  12. 12.
    Fontes, R.R., Afzal, S., Brito, S.H.B., Santos, M.A.S., Rothenberg, C.E.: Mininet-WiFi: emulating software-defined wireless networks. In: 2015 11th International Conference on Network and Service Management (CNSM), pp. 384–389, November 2015Google Scholar
  13. 13.
    Fontes, R.D.R., Rothenberg, C.E.: Mininet-WiFi: a platform for hybrid physical-virtual software-defined wireless networking research. In: Proceedings of the 2016 Conference on ACM SIGCOMM 2016 Conference, SIGCOMM 2016, pp. 607–608. ACM, New York (2016)Google Scholar
  14. 14.
    Gomez-Miguelez, I., Garcia-Saavedra, A., Sutton, P.D., Serrano, P., Cano, C., Leith, D.J.: srsLTE: an open-source platform for LTE evolution and experimentation. arXiv:1602.04629 [cs], February 2016
  15. 15.
    Gupta, R.: Real-Time LTE Testbed using ns-3 and LabVIEW for SDN in CROWD. Span (2015)Google Scholar
  16. 16.
    Gupta, R., et al.: LabVIEW based Platform for prototyping dense LTE Networks (2014)Google Scholar
  17. 17.
    Halba, K., Mahmoudi, C.: In-vehicle software defined networking: an enabler for data interoperability. In: Proceedings of the 2nd International Conference on Information System and Data Mining, Lakeland, FL, USA, ICISDM 2018, pp. 93–97. ACM, New York (2018).
  18. 18.
    Imran, M., Said, A.M., Hasbullah, H.: A survey of simulators, emulators and testbeds for wireless sensor networks. In: 2010 International Symposium on Information Technology, vol. 2, pp. 897–902. IEEE, June 2010Google Scholar
  19. 19.
    Kaltenberger, F., Knopp, R., Nikaein, N., Nussbaum, D., Gauthier, L., Bonnet, C.: OpenAirInterface: open-source software radio solution for 5G. In: European Conference on Networks and Communications (EUCNC), Paris, France (2015)Google Scholar
  20. 20.
    Khana, A.U.R., Bilalb, S.M., Othmana, M.: A Performance Comparison of Network Simulators for Wireless Networks. arXiv:1307.4129 [cs], July 2013. arXiv:1307.4129
  21. 21.
    Klein, D., Jarschel, M.: An OpenFlow extension for the OMNeT++ INET framework. In: Proceedings of the 6th International ICST Conference on Simulation Tools and Techniques, SimuTools 2013, Cannes, France, pp. 322–329. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), ICST, Brussels, Belgium (2013).
  22. 22.
    Kotstein, S., Decker, C.: Reinforcement learning for IoT interoperability. In: 2019 IEEE International Conference on Software Architecture Companion (ICSA-C), pp. 11–18, March 2019.
  23. 23.
    Kumar, A., Kaushik, S.K., Sharma, R., Raj, P.: Simulators for wireless networks: a comparative study. In: 2012 International Conference on Computing Sciences, pp. 338–342, September 2012Google Scholar
  24. 24.
    Lin, B.S.P., Lin, F.J., Tung, L.P.: The roles of 5G mobile broadband in the development of IoT, big data, cloud and SDN. Commun. Netw. 8(1), 9–21 (2016). Scholar
  25. 25.
    Maksymyuk, T., Dumych, S., Brych, M., Satria, D., Jo, M.: An IoT based monitoring framework for software defined 5G mobile networks. In: Proceedings of the 11th International Conference on Ubiquitous Information Management and Communication, IMCOM 2017, Beppu, Japan, pp. 105:1–105:4. ACM, New York (2017).
  26. 26.
    Pham, T.: pthien92/sdn-adapter-designer-react-typescript, November 2019. Original-date: 2019-11-01T11:36:03Z
  27. 27.
    Pham, T.: pthien92/simulations-scripts, November 2019. Original-date: 2019-11-01T12:15:51Z
  28. 28.
    Riley, G.F., Henderson, T.R.: The ns-3 network simulator. In: Wehrle, K., Güneş, M., Gross, J. (eds.) Modeling and Tools for Network Simulation, pp. 15–34. Springer, Heidelberg (2010). Scholar
  29. 29.
    Salih, M.A., Cosmas, J., Zhang, Y.: OpenFlow 1.3 extension for OMNeT++. In: 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing, pp. 1632–1637, October 2015.
  30. 30.
    Varga, A.: INET Framework for the OMNeT++ Discrete Event Simulator (2012)Google Scholar
  31. 31.
    Varga, A., et al.: The OMNeT++ discrete event simulation system. In: Proceedings of the European Simulation Multiconference (ESM 2001), vol. 9, p. 65 (2001)Google Scholar
  32. 32.
    Virdis, A., Stea, G., Nardini, G.: Simulating LTE/LTE-advanced networks with SimuLTE. In: Obaidat, M.S., Ören, T., Kacprzyk, J., Filipe, J. (eds.) Simulation and Modeling Methodologies, Technologies and Applications. AISC, vol. 402, pp. 83–105. Springer, Cham (2015). Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020

Authors and Affiliations

  1. 1.Teletraffic Research CentreThe University of AdelaideAdelaideAustralia

Personalised recommendations