Advertisement

Computational Assessment of Risk of Subdural Hematoma Associated with Ventriculoperitoneal Shunt Placement

  • Milan TomaEmail author
  • Sheng-Han Kuo
Conference paper
  • 34 Downloads
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 36)

Abstract

Hydrocephalus is an accumulation of cerebrospinal fluid within the brain. The condition yields increased pressure inside the skull. When excess cerebrospinal fluid collects in the ventricles of the brain, ventriculoperitoneal (cerebral) shunt is routinely implanted. A ventriculoperitoneal shunt redirects fluid from the ventricles to the abdominal cavity. However, the ventriculoperitoneal shunt is sometimes associated with several complications, e.g. subdural hematoma. A subdural hematoma is a collection of blood outside the brain caused by the sudden shrinkage of the brain as the cerebrospinal fluid is drained away by the shunt implant. However, the mechanism of the development of subdura hematoma remains not entirely clear due to the dynamic alterations between cerebrospinal fluid, intraparenchyma, and ventricular pressure. Therefore, we aim to establish a model to simulate this interaction to understand the mechanism.

Keywords

Computational geometry Smooth-particle hydrodynamics Fluid-structure interaction 

Notes

Funding Information

This study has been partially supported by a faculty start-up fund provided by the New York Institute of Technology and by a donation from the New York Thoroughbred Horseman’s Association.

Ethics Approval

No formal approval was necessary for this study.

Conflict of Interest

All authors declare no conflict of interest. No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

References

  1. 1.
    Chrissicopoulos, C., Mourgela, S., Kirgiannis, K., Sakellaropoulos, A., Ampertos, N., Petritsis, K., Spanos, A.: What is the appropriate shunt system for normal-pressure hydrocephalus? Acta Neurochir. Suppl. 113, 119–121 (2012).  https://doi.org/10.1007/978-3-7091-0923-6_24CrossRefGoogle Scholar
  2. 2.
    Hoya, K., Tanaka, Y., Uchida, T., Takano, I., Nagaishi, M., Kowata, K., Hyodo, A.: Treatment of traumatic acute subdural hematoma in adult hydrocephalus patients with cerebrospinal fluid shunt. Clin. Neurol. Neurosurg. 114, 211–216 (2011)CrossRefGoogle Scholar
  3. 3.
    Tangen, K.M., Hsu, C.Y., Zhu, D.C., Linninger, A.A.: CNS wide simulation of flow resistance and drug transport due to spinal microanatomy. J. Biomech. 48(10), 2144–2154 (2015).  https://doi.org/10.1016/j.jbiomech.2015.02.018CrossRefGoogle Scholar
  4. 4.
    Rengachary, S.S., Ellenbogen, R.G.: Principles of Neurosurgery. Elsevier Mosby (2005)Google Scholar
  5. 5.
    Linninger, A.A., Tangen, K.M., Hsu, C.Y., Frim, D.: Cerebrospinal fluid mechanics and its coupling to cerebrovascular dynamics. Annu. Rev. Fluid Mech. 48, 219–257 (2016).  https://doi.org/10.1146/annurev-fluid-122414-034321MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ho, J., Kleiven, S.: Dynamic response of the brain with vasculature: a three-dimensional computational study. J. Biomech. 40(13), 3006–3012 (2007).  https://doi.org/10.1016/j.jbiomech.2007.02.011CrossRefGoogle Scholar
  7. 7.
    Chen, Y., Ostoja-Starzewski, M.: MRI-based finite element modeling of head trauma: spherically focusing shear waves. Acta Mech. 213(1–2), 155–167 (2010).  https://doi.org/10.1007/s00707-009-0274-0CrossRefzbMATHGoogle Scholar
  8. 8.
    Watanabe, D., Yuge, K., Nishimoto, T., Murakami, S., Takao, H.: Impact injury analysis of the human head. AutoTechnology 7(6), 34–37 (2007).  https://doi.org/10.1007/BF03247021CrossRefGoogle Scholar
  9. 9.
    Chafi, M.S., Dirisala, V., Karami, G., Ziejewski, M.: A finite element method parametric study of the dynamic response of the human brain with different cerebrospinal fluid constitutive properties. Proc. Inst. Mech. Eng. Part H: J. Eng. Med. 223(8), 1003–1019 (2009).  https://doi.org/10.1243/09544119JEIM631CrossRefGoogle Scholar
  10. 10.
    Madhukar, A., Chen, Y., Ostoja-Starzewski, M.: Effect of cerebrospinal fluid modelling on spherically convergent shear waves during blunt head trauma. Int. J. Numer. Method Biomed. Eng. 33(12), e2881 (2017).  https://doi.org/10.1002/cnm.2881CrossRefGoogle Scholar
  11. 11.
    Toma, M., Nguyen, P.D.H.: Fluid–structure interaction analysis of cerebrospinal fluid with a comprehensive head model subject to a rapid acceleration and deceleration. Brain Inj. 32(12), 1576–1584 (2018).  https://doi.org/10.1080/02699052.2018.1502470CrossRefGoogle Scholar
  12. 12.
    Toma, M.: Predicting concussion symptoms using computer simulations. In: Advances in Intelligent Systems and Computing, vol. 880, pp. 557–569 (2018).  https://doi.org/10.1007/978-3-030-02686-8_42
  13. 13.
    Toma, M., Nguyen, P.D.H.: Coup-contrecoup brain injury: fluid-structure interaction simulations. Int. J. Crashworthiness (2019).  https://doi.org/10.1080/13588265.2018.1550910
  14. 14.
    Zhou, Z., Li, X., Kleiven, S.: Fluid–structure interaction simulation of the brain-skull interface for acute subdural haematoma prediction. Biomech. Model. Mechanobiol. 18(1), 155–173 (2019).  https://doi.org/10.1007/s10237-018-1074-zCrossRefGoogle Scholar
  15. 15.
    Zhou, Z., Li, X., Kleiven, S.: Biomechanics of acute subdural hematoma in the elderly: a fluid–structure interaction study. J. Neurotrauma 36(13), 2099–2108 (2019).  https://doi.org/10.1089/neu.2018.6143CrossRefGoogle Scholar
  16. 16.
    Vorwerk, J., Clerc, M., Burger, M., Wolters, C.H.: Comparison of boundary element and finite element approaches to the EEG forward problem. Biomed. Eng./Biomedizinische Technik. 57(SI-1 Track-O), 795–798 (2012).  https://doi.org/10.1515/bmt-2012-4152
  17. 17.
    Luo, Y., Li, Z., Chen, H.: Finite-element study of cerebrospinal fluid in mitigating closed head injuries. J. Eng. Med. 226(7), 499–509 (2012).  https://doi.org/10.1177/0954411912445729CrossRefGoogle Scholar
  18. 18.
    Liang, Z., Luo, Y.: A QCT-based nonsegmentation finite element head model for studying traumatic brain injury. Appl. Bion. Biomech. 2015, e837585 (2015).  https://doi.org/10.1155/2015/837585CrossRefGoogle Scholar
  19. 19.
    Bei, L., Shijie, R., Haiyan, L., Shihai, C., Lijuan, H.: The effects of different mesh density of the cerebrospinal fluid on the dynamic responses of a 6 years old child finite element head model. In: Eighth International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), pp. 756–767 (2016).  https://doi.org/10.1109/ICMTMA.2016.186
  20. 20.
    Gilchrist, M.D., O’Donoghue, D.: Simulation of the development of the frontal head impact injury. Comput. Mech. 26(3), 229–235 (2000).  https://doi.org/10.1007/s004660000179CrossRefzbMATHGoogle Scholar
  21. 21.
    Toma, M., Njilie, F.E.A., Ghajari, M., Galvanetto, U.: Assessing motorcycle crash-related head injuries using finite element simulations. Int. J. Simul. Model. 9(3), 143–151 (2010).  https://doi.org/10.2507/ijsimm09(3)3.164CrossRefGoogle Scholar
  22. 22.
    Durrwachter, J.: Hemodynamics of the left ventricle: validation of a smoothed–particle hydrodynamics fluid-structure interaction model. M.S. thesis, Georgia Institute of Technology (2016)Google Scholar
  23. 23.
    Caballero, A., Mao, W., Liang, L., Oshinski, J., Primianok, C., McKay, R., Kodali, S., Sun, W.: Modeling left ventricular blood flow using smoothed particle hydrodynamics. Cardiovasc. Eng. Technol. 8(4), 465–479 (2017)CrossRefGoogle Scholar
  24. 24.
    Toma, M., Bloodworth IV, C.H., Einstein, D.R., Pierce, E.L., Cochran, R.P., Yoganathan, A.P., Kunzelman, K.S.: High resolution subject-specific mitral valve imaging and modeling: experimental & computational methods. Biomech. Model. Mechanobiol. 15(6), 1619–1630 (2016).  https://doi.org/10.1007/s10237-016-0786-1CrossRefGoogle Scholar
  25. 25.
    Mao, W., Li, K., Sun, W.: Fluid-structure interaction study of transcatheter aortic valve dynamics using smoothed particle hydrodynamics. Cardiovasc. Eng. Technol. 7(4), 374–388 (2016)CrossRefGoogle Scholar
  26. 26.
    Toma, M., Einstein, D.R., Bloodworth IV, C.H., Cochran, R.P., Yoganathan, A.P., Kunzelman, K.S.: Fluid–structure interaction and structural analyses using a comprehensive mitral valve model with 3D chordal structure. Int. J. Numer. Methods Biomed. Eng. 33(4) (2017).  https://doi.org/10.1002/cnm.2815
  27. 27.
    Toma, M., Bloodworth IV, C.H., Pierce, E.L., Einstein, D.R., Cochran, R.P., Yoganathan, A.P., Kunzelman, K.S.: Fluid-structure interaction analysis of ruptured mitral chordae tendineae. Ann. Biomed. Eng. 45(3), 619–631 (2017).  https://doi.org/10.1007/s10439-016-1727-yCrossRefGoogle Scholar
  28. 28.
    Toma, M., Jensen, M.O., Einstein, D.R., Yoganathan, A.P., Cochran, R.P., Kunzelman, K.S.: Fluid-structure interaction analysis of papillary muscle forces using a comprehensive mitral valve model with 3D chordal structure. Ann. Biomed. Eng. 44(4), 942–953 (2016).  https://doi.org/10.1007/s10439-015-1385-5CrossRefGoogle Scholar
  29. 29.
    Singh-Gryzbon, S., Sadri, V., Toma, M., Pierce, E.L., Wei, Z.A., Yoganathan, A.P.: Development of a computational method for simulating tricuspid valve dynamics. Ann. Biomed. Eng. 47(6), 1422–1434 (2019).  https://doi.org/10.1007/s10439-019-02243-yCrossRefGoogle Scholar
  30. 30.
    Toma, M., Nguyen, P.D.H.: Fluid-structure interaction analysis of cerebral spinal fluid with a comprehensive head model subject to a car crash-related whiplash. In: 5th International Conference on Computational and Mathematical Biomedical Engineering - CMBE2017 (2017)Google Scholar
  31. 31.
    Toma, M.: The emerging use of SPH in biomedical applications. Significances Bioeng. Biosci. 1(1), SBB.000502 (2017).  https://doi.org/10.31031/SBB.2017.01.000502
  32. 32.
    Toma, M., Oshima, M., Takagi, S.: Decomposition and parallelization of strongly coupled fluid-structure interaction linear subsystems based on the Q1/P0 discretization. J. Comput. Struct. 173, 84–94 (2016).  https://doi.org/10.1016/j.compstruc.2016.06.001CrossRefGoogle Scholar
  33. 33.
    Miller, J.D., Nader, R.: Acute subdural hematoma from bridging vein rupture: a potential mechanism for growth. J. Neurosurg. 120(6), 1259–1502 (2014).  https://doi.org/10.3171/2013.10.JNS13272CrossRefGoogle Scholar
  34. 34.
    Depreitere, B., Lierde, C.V., Sloten, J.V., Audekercke, R.V., Perre, G.V.D., Plets, C., Goffin, J.: Mechanics of acute subdural hematomas resulting from bridging vein rupture. J. Neurosurg. 104(6), 950–956 (2006).  https://doi.org/10.3171/jns.2006.104.6.950CrossRefGoogle Scholar
  35. 35.
    Cui, Z.Y., Famaey, N., Depreitere, B., Ivens, J., Kleiven, S., Sloten, V.J.: On the assessment of bridging vein rupture associated acute subdural hematoma through finite element analysis. Comput. Methods Biomech. Biomed. Eng. 20(5), 530–539 (2017).  https://doi.org/10.1080/10255842.2016.1255942CrossRefGoogle Scholar
  36. 36.
    Lee, M.C., Haut, R.C.: Insensitivity of tensile failure properties of human bridging veins to strain rate: implications in biomechanics of subdural hematoma. J. Biomechan. 22(6–7), 537–542 (1989).  https://doi.org/10.1016/0021-9290(89)90005-5CrossRefGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, College of Engineering and Computing SciencesNew York Institute of TechnologyOld WestburyUSA
  2. 2.Department of Osteopathic Manipulative Medicine, College of Osteopathic MedicineNew York Institute of TechnologyOld WestburyUSA
  3. 3.Department of Neurology, Columbia University Medical CenterColumbia UniversityNew York CityUSA

Personalised recommendations