DD-Finite Functions Implemented in Sage

  • Antonio Jiménez-PastorEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11989)


We present here the Sage package dd_functions which provides symbolic features to work with DD-finite functions, a natural extension of the class of holonomic or D-finite functions, on the computer. Closure properties, composition of DD-finite functions and sequence extraction are key features of this package. All these operations reduce the problem to linear algebra computations where classical division-free algorithms are used.


Holonomic D-finite Generating functions Closure properties Formal power series 


  1. 1.
    Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (1999)Google Scholar
  2. 2.
    Olver, F.W.J., et al. (eds.): NIST Digital Library of Mathematical Functions. Release 1.0.16 of 2017–09-18.
  3. 3.
    Jiménez-Pastor, A., Pillwein, V.: Algorithmic arithmetics with DD-finite functions. In: Carlos, A. (ed.) Proceedings of the 2018 ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC 2018, pp. 231–237. ACM, New York (2018).
  4. 4.
    Jiménez-Pastor, A., Pillwein, V.: A computable extension for D-finite functions: DD-finite functions. J. Symb. Comput. 94, 90–104 (2019). Scholar
  5. 5.
    Jiménez-Pastor, A., Pillwein, V., Singer, M.F.: Some structural results on D\(^n\)-finite functions. Technical report, Doctoral Program Computational Mathematics, Preprint series (2019, submitted to journal)Google Scholar
  6. 6.
    Kauers, M., Jaroschek, M., Johansson, F.: Ore polynomials in Sage. In: Gutierrez, J., Schicho, J., Weimann, M. (eds.) Computer Algebra and Polynomials. Lecture Notes in Computer Science, pp. 105–125. Springer, Cham (2014). Scholar
  7. 7.
    Kauers, M., Paule, P.: The Concrete Tetrahedron: Symbolic Sums, Recurrence Equations, Generating Functions, Asymptotic Estimates, 1st edn. Springer, Vienna (2011). Scholar
  8. 8.
    Koutschan, C.: Advanced applications of the holonomic systems approach. Ph.D. thesis, RISC-Linz, Johannes Kepler University (2009).
  9. 9.
    Rainville, E.D.: Special Functions, 1st edn. Chelsea Publishing Co., Bronx (1971)zbMATHGoogle Scholar
  10. 10.
    Salvy, B., Zimmermann, P.: GFUN: a Maple package for the manipulation of generating and holonomic functions in one variable. ACM Trans. Math. Softw. 20(2), 163–177 (1994)CrossRefGoogle Scholar
  11. 11.
    Stanley, R.P.: Differentiably finite power series. Eur. J. Comb. 1(2), 175–188 (1980). Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Johannes Kepler UniversityLinzAustria

Personalised recommendations