Advertisement

Computing an Invariant of a Linear Code

  • Mijail Borges-QuintanaEmail author
  • Miguel Ángel Borges-Trenard
  • Edgar Martínez-MoroEmail author
  • Gustavo Torres-Guerrero
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11989)

Abstract

In this work we present an efficient algorithm that generates the leader codewords of a linear code in an incremental form. On the other hand, using the set of leader codewords we define a transformation that remains invariant only if the codes are equivalent which is used as a signature for checking the code equivalence problem. An upper bound on the weight of the codewords is imposed to this algorithm in order to get a smallest set that can be also used as a signature for the ‘Code Equivalence Problem’.

Keywords

Leader codewords Code equivalence Coset leaders 

References

  1. 1.
    Babai, L., Codenotti, P., Grochow, J.A., Qiao, Y.: Code equivalence and group isomorphism. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1395–1408. Society for Industrial and Applied Mathematics (2011)Google Scholar
  2. 2.
    Betten, A., Braun, M., Fripertinger, H., Kerber, A., Kohnert, A., Wassermann, A.: Error-Correcting Linear Codes: Classification by Isometry and Applications, vol. 18. Springer, Heidelberg (2006).  https://doi.org/10.1007/3-540-31703-1CrossRefzbMATHGoogle Scholar
  3. 3.
    Borges-Quintana, M., Borges-Trenard, M., Márquez-Corbella, I., Martínez-Moro, E.: Computing coset leaders and leader codewords of binary codes. J. Algebra Appl. 14(8), 19 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Borges-Quintana, M., Borges-Trenard, M., Martínez-Moro, E.: On a Gröbner bases structure associated to linear codes. J. Discrete Math. Sci. Cryptogr. 10(2), 151–191 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Borges-Quintana, M., Borges-Trenard, M., Martínez-Moro, E.: On the weak order ideal associated to linear codes. Math. Comput. Sci. 12(3), 339–347 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Braun, G., Pokutta, S.: A polyhedral characterization of border bases. SIAM J. Discrete Math. 30(1), 239–265 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Helleseth, T., Kløve, T., Levenshtein, V.I.: Error-correction capability of binary linear codes. IEEE Trans. Inf. Theory 51(4), 1408–1423 (2005)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Leon, J.S.: Computing automorphism groups of error-correcting codes. IEEE Trans. Inform. Theory 28, 496–511 (1982)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Mora, T.: Solving Polynomial Equation Systems II: Macaulay’s Paradigm and Gröbner Technology. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  10. 10.
    Petrank, E., Roth, R.: Is code equivalence easy to decide? IEEE Trans. Inform. Theory 43(5), 1602–1604 (1997)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Sendier, N.: Finding the permutation between equivalent linear codes: the support splitting algorithm. IEEE Trans. Inform. Theory 46(4), 1193–1203 (2000)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Sendier, N., Simos, D.: How easy is code equivalence over \(\mathbb{F}_q\)? In: International Workshop on Coding and Cryptography (2013). https://www.rocq.inria.fr/secret/PUBLICATIONS/codeq3.pdf
  13. 13.
    Sendrier, N., Simos, D.E.: The hardness of code equivalence over \(\mathbb{F}_q\) and its application to code-based cryptography. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 203–216. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38616-9_14CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mijail Borges-Quintana
    • 1
    Email author
  • Miguel Ángel Borges-Trenard
    • 2
  • Edgar Martínez-Moro
    • 3
    Email author
  • Gustavo Torres-Guerrero
    • 1
  1. 1.Department of Mathematics, Faculty of Natural and Exact SciencesUniversity of OrienteSantiago de CubaCuba
  2. 2.Doctorate in Mathematics EducationUniversity Antonio NariñoBogotáColombia
  3. 3.Institute of Mathematics IMUVaUniversity of ValladolidValladolidSpain

Personalised recommendations