Advertisement

Kernel-Based Fuzzy Clustering for Sinusitis Dataset

  • Zuherman RustamEmail author
  • Nadisa Karina Putri
  • Jacub Pandelaki
  • Widyo Ari Nugroho
  • Dea Aulia Utami
  • Sri Hartini
Conference paper
  • 28 Downloads
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 123)

Abstract

Sinusitis is a condition resulting from inflammation of sinus walls. In handling the disease, machine learning method is often used to find more precise and accurate treatment plan for patients. For instance, fuzzy clustering is widely used for pattern recognition and data mining. Due to uncertainty and ambiguity, this method is used to overcome the non-linearity of medical dataset. In this study, fuzzy clustering was provided with kernel methods. We used some Kernel methods such as, Kernelized Fuzzy c-Means (KFCM), Kernelized Possibilistic c-Means (KPCM), Kernelized Fuzzy Possibilistic c-Means (KFPCM), and Kernelized Possibilistic Fuzzy c-Means (KPFCM) for clustering sinusitis dataset. The dataset was retrieved from Cipto Mangunkusumo Hospital Jakarta, Indonesia, which contains 4 features and 200 instances of this condition. These level of accuracy and model performance are used to compare these approaches. The result showed that KFCM has the highest accuracy for categorizing sinusitis dataset with accuracy of 96.97% and running time of 0.01 s.

Keywords

Kernelized Fuzzy c-Means (KFCM) Kernelized Possibilistic c-Means (KPCM) Kernelized Fuzzy Possibilistic c-Means (KFPCM) Kernelized Possibilistic Fuzzy c-Means (KPFCM) Sinusitis 

Notes

Acknowledgement

We wish to express our gratitude to the University of Indonesia and PIT.9 2019 research grant scheme (ID number NKB-0039/UN2.R3.1/HKP.05.00/2019) for facilitating this study. This work was also supported by the Department Radiology of Dr. Cipto Mangunkusumo’s Hospital, and we are so grateful to them. We also thank all the reviewers for the improvements made.

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
    Suganya, R., Shanthi, R.: Fuzzy C-means algorithm – a review. Int. J. Sci. Res. Publ. 2, 440–442 (2012)Google Scholar
  5. 5.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Function Algorithms. Plenum Press, New York (1981)CrossRefGoogle Scholar
  6. 6.
    Pal, N.R., Pal, K., Bezdek, J.C.: A mixed c-means clustering model. IEEE Trans. Fuzzy Syst. 1, 11–21 (1997).  https://doi.org/10.1109/fuzzy.1997.616338. IEEECrossRefGoogle Scholar
  7. 7.
    Krishnapuram, R., Keller, M.: A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 1(2), 98–110 (1993).  https://doi.org/10.1109/91.227387CrossRefGoogle Scholar
  8. 8.
    Shanmugapriya, B., Punithvalli, M.: A new kernelized fuzzy possibilistic C-means for high dimensional data clustering based on kernel-induced distance measure. In: International Conference on Computer Communication and Informatics, pp. 1–5, IEEE (2013).  https://doi.org/10.1109/iccci.2013.6466319
  9. 9.
    Kalam, R., Thomas, C., Rahiman, M.A.: Gaussian kernel based fuzzy c-means clustering algorithm for image segmentation. In: The Second International Conference on Computer Science, Engineering, and Information Technology, pp. 47–46 (2016).  https://doi.org/10.5121/csit.2016.60405
  10. 10.
    Rustam, Z., Wulan, A., Jannati, M.V., Fauzan, A.A.: Application kernel modified fuzzy c-means for glumatosis cerebri. In: Proceedings, 2016 12th International Conference on Mathematics, Statistics, and Their Applications, ICMSA: In Conjunction with the 6th Annual International Conference of Syiah Kuala University, pp. 33–38 (2017).  https://doi.org/10.1109/icmsa.2016.7954303
  11. 11.
    Vijayarani, S., Sudha, S.: An efficient clustering algorithm for prediction diseases from hemogram blood test samples. Indian Journal of Science and Technology 18, 1 (2015).  https://doi.org/10.17485/ijst/2015/v8i17/52123CrossRefGoogle Scholar
  12. 12.
    Wu, X.H.: A possibilistic C-means clustering algorithm based on kernel methods. In: International Conference on Communications, Circuits, and Systems, pp. 2062–2063. IEEE (2006).  https://doi.org/10.1109/cimca.2005.1631512
  13. 13.
    Yong, Z., Yue’e, L., Shixiong, X.: Robust fuzzy-possibilistic C-means algorithm. In: Second International Symposium on Intelligent Information Technology Application, pp. 669–673. IEEE (2008).  https://doi.org/10.1109/iita.2008.146
  14. 14.
    Pal, N.R., Pal, K., Keller, J.M., Bezdek, J.C.: A possibilistic fuzzy c-means clustering algorithm. IEEE Trans. Fuzzy Syst. 13(5), 517–530 (2005).  https://doi.org/10.1109/tfuzz.2004.840099. IEEECrossRefGoogle Scholar
  15. 15.
    Wu, X.H., Zhou, J.J.: Possibilistic fuzzy c-Means clustering model using kernel methods. In: Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference Intelligent Agents, Web Technologies, and Internet Commerce, IEEE (2005).  https://doi.org/10.1109/cimca.2005.1631512
  16. 16.
    Magaina, B.O., Ruelas, R., Corona-Nakamura, M.A., Andina, D.: An improvement to the possibilistic fuzzy c-Means clustering algorithm. In: World Automation Congress, Budapest, Hungary, IEEE (2006).  https://doi.org/10.1109/wac.2006.376056
  17. 17.
    Burkov, A.: The Hundred-Page Machine Learning Book. Andriy Burkov, Canada (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Zuherman Rustam
    • 1
    Email author
  • Nadisa Karina Putri
    • 1
  • Jacub Pandelaki
    • 2
  • Widyo Ari Nugroho
    • 2
  • Dea Aulia Utami
    • 1
  • Sri Hartini
    • 1
  1. 1.Department of MathematicsUniversity of IndonesiaDepokIndonesia
  2. 2.Department of RadiologyDr. Cipto Mangunkusumo Hospital, DKIJakartaIndonesia

Personalised recommendations