Certain Properties of a Subclass of Multivalent Analytic Functions Using Multiplier Transformation

  • Laxmipriya Parida
  • Ashok Kumar Sahoo
  • Susanta Kumar PaikrayEmail author
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 123)


Using the operator \(\mathcal Q_p^{m}(c,d)\), here we create a subclass of \(\mathrm A_{p}\) and studied inclusion and majorization properties of the subclass. Moreover, we have studied certain properties of the functions of the class \(\mathrm A_p\) in connection with subordination by using the above operator. Also, associated results realised by earlier researchers are particularised under the consideration of specific parameters. Furthermore, the results which are consistent with the previously settled results are also reflected here.


p-valent analytic functions Inclusion relationships Majorisation properties Hadamard product Subordination Neighborhood 




  1. 1.
    Swamy, S.R.: Inclusion properties of certain subclasses of analytic functions defined by a generalized multiplier transformation. Int. J. Math. Anal. 6, 1553–1564 (2012)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Swamy, S.R.: Inclusion properties of certain subclasses of analytic functions. Int. Math. Forum 7, 1751–1760 (2012)MathSciNetzbMATHGoogle Scholar
  3. 3.
    C\(\check{a}\)tas, A.: On certain classes of \(p\)-valent functions defined by multiplier transformation. In: Proceedings of the International Symposium on Geometric Function Theory and Applications, Istanbul, Turkey, pp. 241-250 (2007)Google Scholar
  4. 4.
    Aghalary, R., Ali, R.M., Joshi, S.B., Ravichandran, V.: Inequalities for functions defined by certain linear operator. Int. J. Math. Sci. 4, 267–274 (2005)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Kumar, S.S., Taneja, C.H., Ravichandran, V.: Classes of multivalent functions defined by Dziok-Srivastava linear operator and multiplier transformation. Kyungpook Math. J. 46, 97–109 (2006)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Srivastava, H.M., Suchitra, K.B., Stephen, A.B., Sivasubramanian, S.: Inclusion and neighborhood properties of certain subclasses of multivalent functions of complex order. J. Inequalities Pure Appl. Math. 7(5), 1–8 (2006)MathSciNetGoogle Scholar
  7. 7.
    Aouf, M.K., Mostafa, A.O.: On a subclasses of \(n-p\)-valent prestarlike functions. Comput. Math. Appl. 55, 851–861 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kamali, M., Orhan, H.: On a subclass of certain starlike functions with negative coefficients. Bull. Korean Math. Soc. 41, 53–71 (2004)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Orhan, H., Kiziltunc, H.: A generalization on subfamily of \(p\)-valent functions with negative coefficients. Appl. Math. Comput. 155, 521–530 (2004)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Cho, N.E., Kim, T.H.: Multiplier transformations and strongly close-to-convex functions. Bull. Korean Math. Soc. 40(3), 399–410 (2003)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cho, N.E., Srivastava, H.M.: Argument estimates of certain analytic functions defined by a class of multiplier transformations. Math. Comput. Model. 37, 39–49 (2003)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Al-Oboudi, F.M.: On univalent functions defined by a generalized Salagean operator. Int. J. Math. Math. Sci. 27, 1429–1436 (2004)CrossRefGoogle Scholar
  13. 13.
    Salagean, G.S.: Subclasses of univalent functions. Lecture Notes in Math, vol. 1013, pp. 362–372. Springer, Heidelberg (1983)Google Scholar
  14. 14.
    Patel, J., Cho, N.E., Srivastava, H.M.: Certain subclasses of multivalent functions associated with a family of linear operators. Math. Comput. Model. 43, 320–338 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    MacGregor, T.H.: Functions whose derivative has a positive real part. Trans. Am. Math. Soc. 104, 532–537 (1962)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hallenbeck, D.J., Ruscheweyh, S.: Subordination by convex functions. Proc. Am. Math. Soc. 52, 191–195 (1975)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Miller, S.S., Mocanu, P.T.: Differential Subordinations, Theory and Applications. Series on Monographs and Textbooks in Pure and Applied Mathematics, vol. 225. Marcel Dekker Inc., New York (2000)CrossRefGoogle Scholar
  18. 18.
    Pashkouleva, D.Ž.: The starlikeness and spiral-convexity of certain subclasses of analytic functions. In: Srivastava, H.M., Owa, S. (eds.) Current Topics in Analytic Function Theory, pp. 266–273. World Scientific Publishing Company, Singapore (1992)CrossRefGoogle Scholar
  19. 19.
    Wilken, D.R., Feng, J.: A remark on convex and starlike functions. J. Lond. Math. Soc. 21, 287–290 (1980)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Whittaker, E.T., Watson, G.N.: A Course on Modern Analysis, An Introduction to the General Theory of Infinite Processess and of Analytic Functions: With an Account of the Principal Transcendental Functions, 4th edn. Cambridge University Press, (1927, Reprinted)Google Scholar
  21. 21.
    Patel, J.: On certain subclasses of multivalent functions involving Cho-Kwon-Srivastava operator, pp. 75–86. Ann. Univ. Mariae Curie-Sklodowska Sect. A, LX (2006)Google Scholar
  22. 22.
    Nehari, Z.: Conformal Mapping. MacGraw Hill Book Company, New York (1952)zbMATHGoogle Scholar
  23. 23.
    MacGregor, T.H.: Majorization by univalent functions. Duke Math. J. 34, 95–102 (1967)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Miller, S.S., Mocanu, P.T.: Univalent solutions of Briot-Bouquet differential subordinations. J. Differ. Equ. 58, 297–309 (1985)CrossRefGoogle Scholar
  25. 25.
    Stankiewicz, J., Stankiewicz, Z.: Some applications of the Hadamard convolution in the theory of functions. Ann. Uinv. Mariae Curie-Sklodowska Sect. A 22-24, 175-181 (1968/1970)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Laxmipriya Parida
    • 1
  • Ashok Kumar Sahoo
    • 1
  • Susanta Kumar Paikray
    • 1
    Email author
  1. 1.VSS University of TechnologySambalpurIndia

Personalised recommendations