Toward DNS of the Ultimate Regime of Rayleigh–Bénard Convection

Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 27)


Heat transfer mediated by a fluid is omnipresent in nature as well as in technical applications and it is always among the fundamental mechanisms of the phenomena. The performance of modern computer processors has reached a plateau owing to the inadequacy of the fluid-based cooling systems to get rid of the heat flux which increases with the operating frequency [1]. On much larger spatial scales, circulations in the atmosphere and oceans are driven by temperature differences whose strength is key for the evolution of the weather and the stability of regional and global climate [2].



This work is supported by the Twente Max-Planck Center and the ERC (European Research Council) Starting Grant no. 804283 UltimateRB. The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. ( for funding this project by providing computing time on the GCS Supercomputer SuperMUC-NG at Leibniz Supercomputing Centre (


  1. 1.
    Chu, R.C., Simons, R.E., Ellsworth, M.J., Schmidt, R.R., Cozzolino, V.: Review of cooling technologies for computer products. IEEE Trans. Dev. Mat. Reliab. 4(4), 568–585 (2004)Google Scholar
  2. 2.
    Egan, P.J., Megan Mullin, M.: Recent improvement and projected worsening of weather in the United States. Nature 532, 357–360 (2016)CrossRefGoogle Scholar
  3. 3.
    Shishkina, O., Stevens, R.J.A.M., Grossmann, S., Lohse, D.: Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution. New J. Phys. 12, 075022 (2010)CrossRefGoogle Scholar
  4. 4.
    Grossmann, S., Lohse, D.: Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 27–56 (2000)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Malkus, M.V.R.: Heat transport and spectrum of thermal turbulence. Proc. R. Soc. London, Ser. A 225, 169 (1954)Google Scholar
  6. 6.
    Priestley, C.H.B.: Turbulent Transfer in the Lower Atmosphere. University of Chicago Press, Chicago (1959)Google Scholar
  7. 7.
    Kraichnan, R.H.: Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5(11), 1374 (1962)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Castaing, B., Gunaratne, G., Heslot, F., Kadanoff., L., Libchaber, A., Thomae, S., Wu, X.Z., Zaleski, S., Zanetti, G.: Scaling of hard thermal turbulence in Rayleigh-Bénard convection. J. Fluid Mech. 204, 1–30 (1989)Google Scholar
  9. 9.
    Fleisher, A.S., Goldstein, R.J.: High Rayleigh number convection of pressurized gases in a horizontal enclosure. J. Fluid Mech. 469, 1–12 (2002)CrossRefGoogle Scholar
  10. 10.
    Chaumat, S., Castaing, B., Chilla, F.: Rayleigh–Bénard cells: influence of plate properties. In: Castro, I.P., Hancock, P.E., Thomas, T.G. (eds.) Advances in Turbulence IX. International Center for Numerical Methods in Engineering, CIMNEGoogle Scholar
  11. 11.
    Niemela, J., Skrbek, L., Sreenivasan, K.R., Donnelly, R.: Turbulent convection at very high Rayleigh numbers. Nature 404, 837–840 (2000)CrossRefGoogle Scholar
  12. 12.
    Ahlers, G., He, X., Funfshilling, D., Bodenshatz, E.: Heat transport by turbulent Rayleigh–Bénard convection for \(Pr\simeq 0.8\) and \(3\times 10^{12}\le Ra \le 10^{15}\): aspect ratio \(\Gamma = 0.50\). New J. Phys. 14, 103012 (2012)Google Scholar
  13. 13.
    Roche, P.E., Gauthier, F., Kaiser, R., Salort, J.: On the triggering of the ultimate regime of convection. New J. Phys. 12, 085014 (2012)CrossRefGoogle Scholar
  14. 14.
    He, X., Funfshilling, D., Bodenshatz, E., Ahlers, G.: Heat transport by turbulent Rayleigh–Bénard convection for \(Pr\simeq 0.8\) and \(4\times 10^{11}\le Ra \le 2\times 10^{14}\): aspect ratio \(\Gamma = 1.00\). New J. Phys. 14, 103012 (2012)Google Scholar
  15. 15.
    Urban, P., Musilovsá, V., Skrbek. L.: Efficiency of heat transfer in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 107, 014302 (2011)Google Scholar
  16. 16.
    Stevens, R.J.A.M., Lohse, D., Verzicco, R.: Prandtl and Rayleigh number dependence of heat transport in high Rayleigh number thermal convection. J. Fluid Mech. 688, 31–43 (2011)CrossRefGoogle Scholar
  17. 17.
    Roche, P.E., Castaing, B., Chabaud, B., Hebral, B., Sommeria, J.: Side wall effects in Rayleigh-Bénard experiments. Eur. Phys. J. B 24, 405–408 (2001)CrossRefGoogle Scholar
  18. 18.
    Ahlers, G.: Effect of sidewall conductance on heat-transport measurements for turbulent Rayleigh-Bénard convection. Phys. Rev. E 63, 015303 (2000)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Verzicco, R.: Sidewall finite conductivity effects in confined turbulent thermal convection. J. Fluid Mech. 473, 201–210 (2002)CrossRefGoogle Scholar
  20. 20.
    Stevens, R.J.A.M., Lohse, D., Verzicco, R.: Sidewall effects in Rayleigh-Bénard convection. J. Fluid Mech. 741, 1–27 (2014)CrossRefGoogle Scholar
  21. 21.
    Verzicco, R.: Effect of non perfect thermal sources in turbulent thermal convection. Phys. Fluids 16, 1965 (2004)CrossRefGoogle Scholar
  22. 22.
    Daya, Z.A., Ecke, R.E.: Does turbulent convection feel the shape of the container? Phys. Rev. Lett. 89(4501), U81–U83 (2001)Google Scholar
  23. 23.
    Stevens, R.J.A.M., Blass, A., Zhu, X., Verzicco, R., Lohse, D.: Turbulent thermal superstructures in Rayleigh-Bénard convection. Phys. Review Fluids 3(4), 041501 (2018)CrossRefGoogle Scholar
  24. 24.
    Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Pergamon Press, Oxford (1984)Google Scholar
  25. 25.
    Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  26. 26.
    Verzicco, R., Orlandi, P.: A finite-difference scheme for three dimensional incompressible flows in cylindrical coordinates. J. Comp. Phys. 123, 402 (1996)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Verzicco, R., Camussi, R.: Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell. J. Fluid Mech. 477, 19–49 (2003)CrossRefGoogle Scholar
  28. 28.
    Busse, F.H.: Viewpoint: the Twins of Turbulence Research. Physics 5, 4 (2012)CrossRefGoogle Scholar
  29. 29.
    Eckhardt, B., Grossmann, S., Lohse, D.: Torque scaling in turbulent Taylor-Couette flow between independently rotating cylinders. J. Fluid Mech. 581, 221–250 (2007)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Ostilla-Monico, R., van der Poel, E., Verzicco, R., Grossmann, S., Sun, C., Lohse, D.: Exploring the phase diagram in the fully turbulent Taylor-Couette flow. J. Fluid Mech. 761, 1–26 (2014)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Zhu, X., Verschoof, R.A., Bakhuis, D., Huisman, S.G., Verzicco, R., Sun, C., Lohse, D.: Wall roughness induces asymptotic ultimate turbulence. Nature Phys. 14(4), 417–423 (2018)CrossRefGoogle Scholar
  32. 32.
    Zhu, X., Mathai, V., Stevens, R.J.A.M., Verzicco, R., Lohse, D.: Transition to the ultimate regime in two-dimensional Rayleigh-Bénard convection. Phys. Review Lett. 120(14), 144502 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.PoF, UTwenteEnschedeThe Netherlands
  2. 2.DII, Uniroma2RomeItaly

Personalised recommendations