Robotic Inspection of Pipelines

  • Michał Ciszewski
  • Mariusz Giergiel
  • Tomasz Buratowski
  • Piotr MałkaEmail author
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 82)


This chapter present robotic inspection of pipelines. Literature research on mobile inspection robots and their applications in various fields is described with relation to the work objective. Problems and defects that arise during exploitation of pipelines are outlined, along with available solutions for monitoring and inspection. Afterwards, review of mobile robots for pipeline inspection is given. Their different modes of application are described. A need for an actively adaptable robot that could be accustomed to various types of pipe inspection tasks was identified, in accordance with the literature research.


  1. 1.
    Buratowski T, Dabrowski B, Uhl T, Banaszkiewicz M. The precise odometry navigation for the group of robots. Schedae Informaticae. 2010;19:99–111.CrossRefGoogle Scholar
  2. 2.
    Francis SLX, Anavatti SG, Garratt M. Dynamic model of autonomous ground vehicle for the path planning module. In: ICARA 2011—Proceedings of the 5th international conference on automation, robotics and applications;2011, p. 73–77.Google Scholar
  3. 3.
    Doroftei I, Grosu V, Spinu V. Design and control of an omni-directional mobile robot in novel algorithms and techniques in telecommunications, automation and industrial electronics. Dordrecht: Springer Netherlands; 2008. p. 105–110Google Scholar
  4. 4.
    Przemysłowy Instytut Automatyki i Pomiarów PIAP. Robot Mobilny IBIS. 2014. Accessed 16 May 2016.
  5. 5.
    NASA. Mars Science Laboratory (MSL). Accessed 12 Apr 2015.
  6. 6.
    Van Winnendael M, Baglioni P, Vago J. Development of the ESA ExoMars rover. In: Proceedings 8th international symposium on artificial intelligence, robotics and automation space;2005, p. 5–8.Google Scholar
  7. 7.
    Kucherenko V, Bogatchev A, Van Winnendael M. Chassis concepts for the ExoMars rover. In: The 8th ESA workshop on advanced space technologies for robotics and automation (ASTRA’04) (2004).Google Scholar
  8. 8.
    Martowicz A, Ciszewski M, Buratowski T, Gallina A, Rosiek M, Seweryn K, Teper W, Zwierzyński AJ, Uhl T. Mechatronic approach in application to solution of research and design problems. Mechatronics. 2016; 36:1–17.CrossRefGoogle Scholar
  9. 9.
    Ciszewski M, Buratowski T, Uhl T, Giergiel M, Seweryn K, Teper W, Zwierzynski AJ. Ultralight mobile drilling system-design and analyses of a robotic platform intended for terrestrial and space applications. In: Robot motion and control (RoMoCo);2015. p. 84–90.Google Scholar
  10. 10.
    Ciszewski M, Teper W, Buratowski T, Uhl T, Gallina A, Seweryn K. Design of an ultralight mobile platform for a drilling system. 2015 IFToMM World Congress Proceedings;2015.Google Scholar
  11. 11.
    SuperDroid Robots Inc. SDR Tactical Robots. 2016. Accessed 17 May 2016
  12. 12.
    Buratowski T, Ciszewski M, Giergiel M, Siatrak M, Wacławski M. Mechatronic approach in inspection of water supply networks;2015 p. 317.Google Scholar
  13. 13.
    Green J. Mine rescue robots requirements Outcomes from an industry workshop. In: 6th robotics and mechatronics conference (RobMech);2013, p. 111–116.Google Scholar
  14. 14.
    Ciszewski M, Giergiel M, Kudriashov A, Małka P. Modelowanie i analiza modalna ramy mobilnego robota inspekcyjnego. In: Modelowanie Inżynierskie. 2015; 23.54:20–25.Google Scholar
  15. 15.
    Przemysłowy Przemysłowy Instytut Automatyki i Pomiarów PIAP. Robot mobilny Scout. 2014. Accessed 16 May 2016.
  16. 16.
    Hixson L. New four legged robot developed by Toshiba to search inside Fukushima reactors., 21 Nov 2012.
  17. 17.
    Hebert P, Bajracharya M, Ma J, Hudson N, Aydemir A, Reid J, Bergh C, Borders J, Frost M, Hagman M, Leichty J, Backes P, Kennedy B, Karplus P, Satzinger B, Byl K, Shankar K, Burdick J. Mobile manipulation and mobility as manipulation- design and algorithms of robosimian. J Field Robot. 2015;32(2):255–74.CrossRefGoogle Scholar
  18. 18.
    Boston Dynamics. RHex All-Terrain Robot. 2016. Accessed 17 May 2016.
  19. 19.
  20. 20.
    LEGEND Technical Services Inc. Microbiologically Influenced Corrosion (MIC). Accessed 07 Apr 2016.
  21. 21.
    Ontario Septic Tank Information. Roots Around Inlet Pipe. Accessed 07 Apr 2016.
  22. 22.
    Kurc K. Mechatronika w projektowaniu robota. Rzeszów: Oficyna Wydawnicza Politechniki Rzeszowskiej, 2010. Chapter 2. Robotic Inspection of Pipelines 20.Google Scholar
  23. 23.
    NDT Resource Center. About NDT. Accessed 15 Apr 2015.
  24. 24.
    Janesick JR, Elliott T, Andrews J, Tower J, Pinter J. Fundamental performance differences of CMOS and CCD imagers: part V. In: Proceedings SPIE 8659, sensors, cameras, and systems for industrial and scientific applications XIV (2013), p. 865–902.Google Scholar
  25. 25.
    IBAK Helmut Hunger GmbH & Co. KG. Cameras—Technological masterpieces & practical designed. Accessed 17 May 2015.
  26. 26.
    IPEK International GmbH. iPEK pipeline inspection. 2016. Accessed 05 Oct 2015
  27. 27.
    KANRES Sp. z o.o. Kamery do kanalizacji. Accessed 12 Apr 2015.
  28. 28.
    Inuktun Services Ltd. Inuktun crawler vehicles. 2015. Accessed 25 Oct 2015.
  29. 29.
    Giergiel J, Kurc K, Giergiel M. Mechatroniczne projektowanie robotów inspekcyjnych. OficynaWydawnicza Politechniki Rzeszowskiej; 2010.Google Scholar
  30. 30.
    Hirao M, Ogi H. EMATs for science and industry—noncontacting ultrasonic measurements. Springer US, 2003. Chapter 2. Robotic Inspection Of Pipelines 19.Google Scholar
  31. 31.
    Holstein P, Andreas T, Ulf B. Ultrasonic pig detection at pipelines. PPSA Seminar; 2010.Google Scholar
  32. 32.
    Dobie G, Galbraith W, Macleod C, Summan R, Pierce G, Gachagan A. Automatic ultrasonic robotic array. In: IEEE International Ultrasonics symposium, IUS; 2013. p. 1861–1864.Google Scholar
  33. 33.
    Dziedziech K, Pieczonka L, Kijanka P, Staszewski WJ. Enhanced nonlinear crack-wave interactions for structural damage detection based on guided ultrasonic waves. In: Structural control and health monitoring 23.8;2016. p. 1108–1120.CrossRefGoogle Scholar
  34. 34.
    Kaczmarek M, Piwakowski B, Drelich R. Noncontact ultrasonic nondestructive techniques: state of the art and their use in civil engineering. J Infrast Syst. 2016; 23.1.Google Scholar
  35. 35.
    Olympus Corporation. Olympus COBRA scanner. 2016. Accessed 02 Apr 2016.
  36. 36.
    MFE Enterprises Inc. What is MFL? 2016. Accessed 05 Apr 2016
  37. 37.
    Pure Technologies Ltd. PureMFL Magnetic Flux Leakage Inline Inspection (ILI). 2016. Accessed 03 Apr 2016.
  38. 38.
    Rausch Electronics USA LLC. Rausch M-Series Laser Pipe Profiling System. 2016. Accessed 19 May 2016.
  39. 39.
    Mini-Cam Ltd. Mini-Cam ProLaserTM Profiling. 2016. Accessed 10 May 2016
  40. 40.
    Choi HR, Roh S. In-pipe robot with active steering capability for moving inside of pipelines in Bioinspiration and robotics walking and climbing robots. InTech. 2007.Google Scholar
  41. 41.
    Roslin NS, Anuar A, Jalal MFA, Sahari KSM. A review: hybrid locomotion of in-pipe inspection robot. In: Procedia engineering; 2012, p. 1456–1462. Chapter 2. Robotic inspection of pipelines 21.CrossRefGoogle Scholar
  42. 42.
    Tavakoli M, Lopes P, Sgrigna L, Viegas C. Motion control of an omnidirectional climbing robot based on dead reckoning method. Mechatronics. 2015;30:94–106.CrossRefGoogle Scholar
  43. 43.
    Maempel J, Koch T, Koehring S, Obermaier A, Witte H. Concept of a modular climbing robot. In: 2009 IEEE symposium on industrial electronics & applications 2; 2009. p. 789–794.Google Scholar
  44. 44.
    Ascending Technologies GmbH. UAV Inspection, Monitoring of Industrial Assets, Oil & Gas. 2016. Accessed 26 Apr 2016.
  45. 45.
    Hansen P, Alismail H, Rer P, Browning B. Visual mapping for natural gas pipe inspection. Int J Robot Res. 2015;34(4–5):532–58.CrossRefGoogle Scholar
  46. 46.
    Sharma Y, Deepak K, Kumar P, Chauhan A. Blockage removal and RF controlled pipe inspection robot (BRICR). Int J Electr Electron Eng Telecomun. 2015;4(3):62–8.Google Scholar
  47. 47.
    Tadakuma K, Ming A, Shimojo M, Yoshida K, Keiji Nagatani Kazuya Yoshida Iagnemma K. Basic running test of the cylindrical tracked vehicle with sideways mobility. In: Intelligent robots and systems. IROS 2009. IEEE/RSJ international conference;2009, p. 1679–1684.Google Scholar
  48. 48.
    IPEK International GmbH. ROVVER Brochure. Accessed 12 Oct 2013.
  49. 49.
    ABE Complex Technology. Kamery Inspekcyjne Samojezdne. Accessed 25 Jan 2015.
  50. 50.
    Autonomous Solutions Inc. Chaos High Mobility Robot. 2016. Accessed 26 Apr 2016.
  51. 51.
    RedZone. Solo Unmanned Inspection Robot. Accessed 21 Oct 2012.
  52. 52.
    Responder Multi-Sensor Inspection for Large Diameter pipe. 2012. Accessed 22 Oct 2012.
  53. 53.
    CUES. Cues Ultra Shorty III. 2012. Accessed 20 Nov 2012.
  54. 54.
  55. 55.
    Carnegie Mellon University. Carnegie Mellon’s Snake Robots Learn To Turn By Following the Lead of Real Sidewinders. Accessed 31 Mar 2016.
  56. 56.
    Hydropulsion. Hydropulsion Vertical Crawler. 2012. Accessed 30 Oct 2012.
  57. 57.
    Inuktun Services Ltd. Versatrax Vertical Crawler. 2015. Accessed 18 Apr 2016.
  58. 58.
    Zhang Y, Yan G. In-pipe inspection robot with active pipe-diameter adaptability and automatic tractive force adjusting. Mech Mach Theory. 2007;42(12):1618–31.CrossRefGoogle Scholar
  59. 59.
    NEOVISION s.r.o. Jetty, Cleaning and inspectional robot for air-induction ducting. Accessed 31 Mar 2016.
  60. 60.
    Nagaya K, Yoshino T, Katayama M, Murakami I, Ando Y. Wireless piping inspection vehicle using magnetic adsorption force. IEEE/ASME Trans Mechatron. 2012;17(3):472–9.CrossRefGoogle Scholar
  61. 61.
    Kim D-W, Park C-H, Kim H-K, Kim S-B. Force adjustment of an active pipe inspection robot. In: 2009 Iccas-Sice. 2009; p. 3792–3797.Google Scholar
  62. 62.
    Lee D, Park J, Hyun D, Yook G, Yang H. Novel mechanisms and simple locomotion strategies for an in-pipe robot that can inspect various pipe types. Mechanism Mach Theor. 2012;56:52–68.CrossRefGoogle Scholar
  63. 63.
    Nayak A, Pradhan S.K. Design of a new in-pipe inspection robot. In: Procedia engineering 2014 97:2081–2091.CrossRefGoogle Scholar
  64. 64.
    Kuwada A, Tsujino K, Suzumori K, Ka T. Intelligent actuators realizing snake-like small robot for pipe inspection. In: IEEE international symposium on MicroNanoMechanical and human science; 2006. p. 1–6.Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Robotics and MechatronicsAGH University of Science and TechnologyKrakowPoland

Personalised recommendations