Advertisement

Development of a Prototype Solution for Hearing Problems in Noise in People with Disabilities, Using an Acoustic Beamforming System with a FPGA Card

  • Fabián SáenzEmail author
  • Paúl Bernal
  • Carlos Romero
  • Marcelo Zambrano Vizuete
Conference paper
  • 24 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 1195)

Abstract

The study of voice signals is an important issue, since a part of society has hearing impairments. This implementation aims to help people with hearing problems, through enhanced voice; using a microphone array with hemispherical methodology broadband beamforming, which can distinguish signals arriving from different directions. A semi-spherical microphone array adapts better to human anatomy because it captures finer sound field.

Keywords

Beamforming Finite precision Adaptative algorithm 

References

  1. 1.
    Agilent EEsof EDA Software: Herramienta Advanced Design System. Recuperado el 7 de Agosto de 2013 (2000). http://www.home.agilent.com/en/pc-1297113/advanced-design-system
  2. 2.
    Apolinário, J., de Campos, M., Bernal, C.: The constrained conjugate gradient algorithm. IEEE Signal Process. Lett. 7(12) (2000)CrossRefGoogle Scholar
  3. 3.
    Papoulis, A., Pillai, U.: Probability, Random Variables and Stochastic Processes. International Edition. McGraw-Hill, New York (2002)Google Scholar
  4. 4.
    Apolinário, J.: Processamento Digital de Sinais. Bookman Editora, São Paulo (2003)Google Scholar
  5. 5.
    Apolinário, J.A.: QDR-RLS Adaptive Filtering. Springer, Boston (2009).  https://doi.org/10.1007/978-0-387-09734-3CrossRefzbMATHGoogle Scholar
  6. 6.
    Apolinario, J., de Campos, M.: Instituto Militar de Engenharia. Recuperado el 21 de 12 de 2014 (2011). http://aquarius.ime.eb.br/~apolin
  7. 7.
    Benesty, J., Chen, J., Huang, Y.: Microphone Array Signal Processing. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78612-2CrossRefGoogle Scholar
  8. 8.
    Bernal Oñate, C.: Principios y Aplicaciones de CDMA “Code Division multiple access” con implementación de algoritmos para la detección de multiusuarios. Tesis, Quito (2000)Google Scholar
  9. 9.
    Bernal, P., Sáenz, F., Romero, C.: Análisis de Señales Acústicas. Departamento de Eléctrica y Electrónica, Universidad de las Fuerzas Armadas ESPE (2014)Google Scholar
  10. 10.
    Caisapanta, A.: Optimización de las señales acústicas en un arreglo semiesférico de micrófonos utilizando la metodología de beamforming de banda ancha. ESPE, Quito (2015)Google Scholar
  11. 11.
    Chandran, S.: Adaptive Antenna Arrays Trends and Applications. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-662-05592-2CrossRefGoogle Scholar
  12. 12.
    de Campos, M., Werner, S., Apolinário, J.: Constrained adaptation algorithms employing householder transformation. IEEE Trans. Signal Process. 50(9), 9 (2002)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Diniz, P.: Adaptive Filtering: Algorithms and Practical Implementation, 4th edn. Springer, Rio de Janeiro (2013).  https://doi.org/10.1007/978-1-4614-4106-9CrossRefzbMATHGoogle Scholar
  14. 14.
    Golub, G., Van Loan, C.: Matrix Computations, 4th edn. The Johns Hopkins University Press, Baltimore (2013)zbMATHGoogle Scholar
  15. 15.
    Gundersen, K., Hakon Husoy, J.: Preconditioner structures for the CLMS adaptive filtering algorithm. In: IEEE (2006)Google Scholar
  16. 16.
    Huang, Z., Balanis, C.: Adaptive beamforming using spherical array. In: IEEE (2005)Google Scholar
  17. 17.
    Liu, W., Weiss, S.: Wideband Beamforming: Concepts and Techniques. Wiley, Chichester (2010)CrossRefGoogle Scholar
  18. 18.
    Madisetti, V.: The Digital Signal Processing Handbook, 2nd edn. Taylor and Francis Group, LLC, Boca Raton (2010)Google Scholar
  19. 19.
    Medina, C.A., Rodríguez, C.V., Apolinário, J.A., León, R.D.: Implementación de un arreglo superdirectivo de micrófonos con múltiples líneas de retardo. Quito (2000)Google Scholar
  20. 20.
    Monzingo, R., Haupt, R., Miller, T.: Introduction to Adaptive Arrays, 2nd edn. SciTech Publishing Inc, Raleigh (2011)Google Scholar
  21. 21.
    Rabiner, L., Schafer, R.W.: Theory and Application of Digital Speech Processing. Prentice Hall, Englewood Cliffs (2009)Google Scholar
  22. 22.
    Sansaloni, T., Valls, J.: Simulador de Sistemas Digitales de Preisión Finita (2000)Google Scholar
  23. 23.
    Valle, S. d.: Manual Práctico de Acústica, Terceira edn. Música & Tecnología, Rio de Janeiro (2009)Google Scholar
  24. 24.
    Van Veen, B., Buckley, K.: Beamforming Techniques for Spatial Filtering. CRCnetBASE (2000)Google Scholar
  25. 25.
    Werner, S., Apolinário, J., de Campos, M.L.R.: On the Equivalence of the Constrained RLS and the GSC-RLS Beamformers. Helsinki University of Technology, Instituto Militar de Engenharia, and Universidade Federal do Rio de Janeiro (s.f.)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Universidad de las Fuerzas Armadas ESPELatacungaEcuador
  2. 2.Universidad Nacional de La PlataLa PlataArgentina
  3. 3.Instituto Superior Tecnológico RumiñahuiSangolquiEcuador

Personalised recommendations