Hardening of Metal Matrix Composites with Ceramic Nanoparticles

  • Victor M. CardenasEmail author
  • Carlos A. Villarreal B.
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1195)


The importance that in the last decades have acquired the composite materials of metallic matrix with reinforcements of nano ceramic particles, not only for their extraordinary mechanical properties, finding applications in different branches of industrial technology such as automotive, naval, aerospace and others. This work aims to show how the hardening of this type of materials depends on: the type of reinforcement, the size and its characteristics, the interaction of the dislocations with the defects, the process of obtaining these materials and the grain size of the matrix for the materials obtained by fusion or the particle size for those obtained by sintered compacting.


Metals hardening Nanoparticles Nano compounds 



Metal matrix compounds


Polymeric matrix compounds


Ceramic matrix compounds


Carbon nanotubes


Nanocomposite metal matrix materials


Coefficient of Thermal Expansion



We would like to thank the Technical University of the North for sponsoring the development of this research.


  1. 1.
    Da Costa, C.E., López, F.V., Castelló, J.M.T.: Materiales compuestos de matriz metalica. I parte. Tipos, propiedades, aplicaciones. Rev. Metal. 36(3), 179–192 (2000)CrossRefGoogle Scholar
  2. 2.
    Mohsin, M., Mohd, A., Arif Siddiqui, M., Suhaib, M., Arif, S.: Effect of alumina on green properties of Al-Fe-Cr powder composites. IOP Conf. Ser. Mater. Sci. Eng. 225, 012171 (2017)CrossRefGoogle Scholar
  3. 3.
    Öksüz, K.E., Çevik, M., Bozdağ, A.E., Özer, A., Şimşir, M.: Production of (V-B) reinforced Fe matrix composites. Int. J. Mater. Metall. Eng. 8(8), 800–804 (2014)Google Scholar
  4. 4.
    Zakeri, M., Zanganeh, T., Najafi, A.: High-frequency induction heated sintering of ball milled Fe-WC nanocomposites. Int. J. Miner. Metall. Mater. 20(7), 693–699 (2013)CrossRefGoogle Scholar
  5. 5.
    Reddy, B.S.B., Rajasekhar, K., Venu, M., Dilip, J.J.S., Das, S., Das, K.: Mechanical activation-assisted solid-state combustion synthesis of in situ aluminum matrix hybrid (Al3Ni/Al2O3) nanocomposites. J. Alloys Compd. 465(1–2), 97–105 (2008)CrossRefGoogle Scholar
  6. 6.
    Vani, V.V., Chak, S.K.: The effect of process parameters in aluminum metal matrix composites with powder metallurgy. Manuf. Rev. 5, 7 (2018)Google Scholar
  7. 7.
    Kang, Y.C., Chan, S.L.I.: Tensile properties of nanometric Al2O3 particulate-reinforced aluminum matrix composites. Mater. Chem. Phys. 85(2–3), 438–443 (2004)CrossRefGoogle Scholar
  8. 8.
    Kim, H.H., Babu, J.S.S., Kang, C.G.: Fabrication of A356 aluminum alloy matrix composite with CNTs/Al2O3 hybrid reinforcements. Mater. Sci. Eng. A 573, 92–99 (2013)CrossRefGoogle Scholar
  9. 9.
    Menezes, P.L., Ingole, S.P.. Nosonovsky, M., Kailas, S.V., Lovell, M.R.: Preface, vol. 9781461419457 (2013)Google Scholar
  10. 10.
    Hashim, J., Looney, L., Hashmi, M.S.J.: Metal matrix composites: production by the stir casting method. J. Mater. Process. Technol. 92–93, 1–7 (1999)CrossRefGoogle Scholar
  11. 11.
    Niu, Y., et al.: Effect of in situ nano-particles on the microstructure and mechanical properties of ferritic steel. Steel Res. Int. 87(11), 1389–1394 (2016)CrossRefGoogle Scholar
  12. 12.
    Attar, S., Nagaral, M., Reddappa, H.N., Auradi, V.: A review on particulate reinforced aluminum metal matrix composites. J. Emerg. Technol. Innov. Res. 2(2), 225–229 (2015)Google Scholar
  13. 13.
    Su, H., Gao, W., Feng, Z., Lu, Z.: Processing, microstructure and tensile properties of nano-sized Al2O3 particle reinforced aluminum matrix composites. Mater. Des. 36, 590–596 (2012)CrossRefGoogle Scholar
  14. 14.
    Yamasaki, T., Zheng, Y.J., Ogino, Y., Terasawa, M., Mitamura, T., Fukami, T.: Formation of metal-TiN/TiC nanocomposite powders by mechanical alloying and their consolidation. Mater. Sci. Eng., A 350(1–2), 168–172 (2003)CrossRefGoogle Scholar
  15. 15.
    Tang, F., Hagiwara, M., Schoenung, J.M.: Microstructure and tensile properties of bulk nanostructured Al-5083/SiCp composites prepared by cryomilling. Mater. Sci. Eng., A 407(1–2), 306–314 (2005)CrossRefGoogle Scholar
  16. 16.
    Xu, N., Zong, B.Y.: Stress in particulate reinforcements and overall stress response on aluminum alloy matrix composites during straining by analytical and numerical modeling. Comput. Mater. Sci. 43(4), 1094–1100 (2008)CrossRefGoogle Scholar
  17. 17.
    Kim, C.S., Cho, K., Manjili, M.H., Nezafati, M.: Mechanical performance of particulate-reinforced Al metal-matrix composites (MMCs) and Al metal-matrix nano-composites (MMNCs). J. Mater. Sci. 52(23), 13319–13349 (2017)CrossRefGoogle Scholar
  18. 18.
    U. City: Waku_JMS_1998.pdf, vol. 3, pp. 1217–1225 (1973)Google Scholar
  19. 19.
    Mirzaei, M., Najafi, M., Niasari, H.: Experimental and numerical analysis of dynamic rupture of steel pipes under internal high-speed moving pressures. Int. J. Impact Eng 85, 27–36 (2015)CrossRefGoogle Scholar
  20. 20.
    Zhang, Z., Chen, D.L.: Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: a model for predicting their yield strength. Scr. Mater. 54(7), 1321–1326 (2006)CrossRefGoogle Scholar
  21. 21.
    Mazahery, A., Abdizadeh, H., Baharvandi, H.R.: Development of high-performance A356/nano-Al2O3 composites. Mater. Sci. Eng., A 518(1–2), 61–64 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Technical University of the NorthIbarraEcuador

Personalised recommendations