Advertisement

Estimation of Electrical Conductivity from Radiofrequency Hyperthermia Therapy for Cancer Treatment by Levenberg Marquardt Method

  • Jorge Iván López Perez
  • Rafael Daniel Serna Maldonado
  • Leonardo A. Bermeo VaronEmail author
  • Javier Ferney Castillo García
Conference paper
  • 17 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 1195)

Abstract

Introduction: The radiofrequency hyperthermia is a technique that by induction of the electromagnetic waves produces the heating in the biological tissues. The increase in body temperature in a range of 40 °C to 46 °C causing heat-induced necrosis, protein inactivity, and inhibition of DNA recovery mechanisms in the cancer cell. The application of this therapy depends on parameters like the frequency and power and physical properties of the tissue, which vary from person to person. One of the important properties is the electrical conductivity of the tissue, which varies depending on the tissue and frequency. In this paper, the electrical conductivity estimation is performed in hyperthermia therapy with different frequencies. Methodology: The estimation process of electrical conductivity is carried out through the Levenberg Marquardt method. The process is performed on simulated experimental data and mathematical model of the system with different frequencies. The geometry used is a copper coil that induces radiofrequency to a domain located in the center of the coil. Results: The estimation of electrical conductivity is obtained to different frequencies from radiofrequency hyperthermia therapy for cancer treatment by the Levenberg Marquardt method. Also, these results allow that by identifying the electrical conductivity of each patient. Conclusions: The estimation of physical properties in the application of cancer treatment is important, in this case with radiofrequency hyperthermia therapy, because it is possible to plan appropriate treatment, due to a better knowledge of the system.

Keywords

Hyperthermia Radiofrequency therapy Parameter estimation Electrical conductivity 

Notes

Acknowledgments

The authors are thankful for the support provided by DGI of Universidad Santiago de Cali, Colombia, project No. 819-621118-120.

Disclosure Statement

No potential conflict of interest was reported by the authors.

References

  1. 1.
    WHO: Cancer. www.who.int. Accessed 1 Oct 2019
  2. 2.
    Rangel-Sosa, M.M., Aguilar-Córdova, E., Rojas-Martínez, A.: Immunotherapy and gene therapy as novel treatments for cancer. Colomb. medica 48, 138–147 (2017)CrossRefGoogle Scholar
  3. 3.
    Oun, R., Moussa, Y.E., Wheate, N.J.: The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton Trans. 47, 6645–6653 (2018)CrossRefGoogle Scholar
  4. 4.
    Palesh, O., Scheiber, C., Kesler, S., Mustian, K., Koopman, C., Schapira, L.: Management of side effects during and post-treatment in breast cancer survivors. Breast J. 24, 167–175 (2018)CrossRefGoogle Scholar
  5. 5.
    Curto, S.: Antenna development for radio frequency hyperthermia applications. Doctoral thesis. Dublin Institute of Technology. Technological University Dublin (2010)Google Scholar
  6. 6.
    Mallory, M., Gogineni, E., Jones, G.C., Greer, L., Simone, C.B.: Therapeutic hyperthermia: the old, the new, and the upcoming. Crit. Rev. Oncol. Hematol. 97, 56–64 (2016)CrossRefGoogle Scholar
  7. 7.
    Gas, P.: Study on interstitial microwave hyperthermia with multi-slot coaxial antenna. Génie biomédicale. 59, 215–224 (2014)Google Scholar
  8. 8.
    Vrba, D., Vrba, J., Rodrigues, D.B., Stauffer, P.: Numerical investigation of novel microwave applicators based on zero-order mode resonance for hyperthermia treatment of cancer. J. Franklin Inst. 354, 8734–8746 (2017)CrossRefGoogle Scholar
  9. 9.
    Guirado, N., Mart, J.C.: Hipertermia oncológica profunda conformada provocada por campos electromagnéticos no ionizantes Conformed deep oncologic hyperthermia caused by electromagnetic. Rev. Fis. Med. 19, 11–44 (2018)Google Scholar
  10. 10.
    Kurgan, E., Gas, P.: Estimation of Temperature Distribution Inside Tissues in External RF Hyperthermia. Prz. Elektrotechniczny 86, 100–102 (2010)Google Scholar
  11. 11.
    Gas, P.: Essential Facts on the History of Hyperthermia and their Connections with Electromedicine. Prz. Elektrotechniczny 87, 37–40 (2011)Google Scholar
  12. 12.
    Bermeo Varon, L.A., Orlande, H.R.B., Elicabe, G.: Estimation of state variables in the hyperthermia therapy of cancer with heating imposed by radiofrequency electromagnetic waves. Int. J. Therm. Sci. 98, 228–236 (2015)CrossRefGoogle Scholar
  13. 13.
    Eibner, S., et al.: Near Infrared Light Heating of Soft Tissue Phantoms Containing Nanoparticles. Eng. térmica. 13, 13–18 (2014)Google Scholar
  14. 14.
    Lamien, B., Bermeo Varon, L.A., Orlande, H.R.B., Eliçabe, G.E.: State Estimation in Bioheat Transfer : a Comparison of Particle Filter Algorithms. Int. J. Numer. Methods Heat Fluid Flow. 27, 1–53 (2017)CrossRefGoogle Scholar
  15. 15.
    Majchrzak, E., Paruch, M.: Numerical modelling of temperature field in the tissue with a tumor subject to the action of two external electrode. Sci. Res. Inst. Math. Comput. Sci. 1, 1–8 (2009)Google Scholar
  16. 16.
    Miaskowski, A., Sawicki, B., Krawczyk, A., Yamada, S.: The application of magnetic fluid hyperthermia to breast cancer treatment. Prz. Elektrotechniczny, 99–101 (2010)Google Scholar
  17. 17.
    Gas, P., Miaskowski, A.: Specifying the ferrofluid parameters important from the viewpoint of Magnetic Fluid Hyperthermia. Sel. Probl. Electr. Eng. Electron., 1–6 (2015)Google Scholar
  18. 18.
    Sun, J., Wang, W., Yue, Q.: Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Mater. 9, 231 (2016)CrossRefGoogle Scholar
  19. 19.
    Beck, J.V.: Sequential methods in parameter estimation. Michigan State University, East Lansing (1999)Google Scholar
  20. 20.
    Borzou, P., Ghaisari, J., Izadi, I., Gheisari, Y.: An iterative LMA method for parameter estimation in dynamic modeling of TGFβ pathway using ODE, pp. 1140–1144 (2019)Google Scholar
  21. 21.
    Madsen, K., Nielsen, H.., Tingleff, O.: Method for Non-Linear Least Squares Problems, pp. 24–29. Informatics and Mathematical Modelling Technical University of Denmark (2004)Google Scholar
  22. 22.
    Ghosh, S., Chattopadhyay, B.P., Roy, R.M., Mukherjee, J., Mahadevappa, M.: Estimation of echocardiogram parameters with the aid of impedance cardiography and artificial neural networks. Artif. Intell. Med. 96, 45–58 (2019)CrossRefGoogle Scholar
  23. 23.
    Huang, C.-H., Huang, C.-Y.: An inverse problem in estimating simultaneously the effective thermal conductivity and volumetric heat capacity of biological tissue. Appl. Math. Model. 31, 1785–1797 (2007)CrossRefGoogle Scholar
  24. 24.
    Gill, P.E., Murray, W.: Algorithms for the solution of the nonlinear least-squares problem. SIAM J. Numer. Anal. 15, 977–992 (1978)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Andrieu, C., De Freitas, N., Doucet, A., Jordan, M.I.: An introduction to MCMC for machine learning. Mach. Learn. 50, 5–43 (2003)CrossRefGoogle Scholar
  26. 26.
    Tan, C., Xu, Y., Dong, F.: Determining the boundary of inclusions with known conductivities using a Levenberg-Marquardt algorithm by electrical resistance tomography. Meas. Sci. Technol. 22, 104005 (2011)CrossRefGoogle Scholar
  27. 27.
    Xu, Y., Dong, F., Tan, C.: Electrical resistance tomography for locating inclusions using analytical boundary element integrals and their partial derivatives. Eng. Anal. Bound. Elem. 34, 876–883 (2010)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Comsol Multiphysics: Comsol Multiphysics Modelling Software. www.comsol.com. Accessed 8 Oct 2019
  29. 29.
    Hasgall, P.A., Neufeld, E., Gosselin, C., Klingenb, M.A., Kuster, N.: IT’IS Database for thermal and electromagnetic parameters of biological tissues (2015). www.itis.ethz.ch/database
  30. 30.
    Maxwell, J.C.: A dynamical theory of the electromagnetic field. Philos. Trans. R. Soc. London. 155, 459–512 (1865)CrossRefGoogle Scholar
  31. 31.
    Ozisik, N.: Heat Conduction. Wiley, New York (1993)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Universidad Santiago de CaliCali, Valle del CaucaColombia

Personalised recommendations