Advertisement

Resource Management Strategy in Case of Disaster Based on Queuing Theory

  • Darin Mosquera
  • Edwin Rivas
  • Luis Alejandro AriasEmail author
Conference paper
  • 53 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 1194)

Abstract

In the present article, the main needs of collection centers and immediate care facilities in case of disasters are analyzed. A model is proposed for the services provided by these collection centers based on queuing theory, including an assessment of the arrival rates and service capacities, waiting times before being treated or receiving no healthcare service. A management algorithm is proposed that allows changes in real time of the system dynamics so it can adjust to queuing models with different features in order to carry out an effective help for system users. This reduces the service time and integral attention of the people affected by a disaster in favor of rapid recovery from a psychological and social point of view.

Keywords

Disaster attention centers Resource management Basic needs Queuing theory System dynamics 

References

  1. U.S. Fire Administration: Operational lessons learned in disaster response, June 2015Google Scholar
  2. Altay, N., Green III, W.G.: Interfaces with other disciplines: OR/MS research in disaster operations management. Eur. J. Oper. Res. 175, 475–493 (2006).  https://doi.org/10.1016/j.ejor.2005.05.016CrossRefzbMATHGoogle Scholar
  3. Asif, H., El-Alfy, E.-S.: Performance evaluation of queuing disciplines for multi-class traffic using OPNET simulator. In: 7th WSEAS International Conference on Mathematical Methods and Computational Techniques in Electrical Engineering, Sofia, 27–29 October 2005, pp. 1–6 (2005)Google Scholar
  4. Capacci, A., Mangano, S.: As catástrofes naturais. Rev. Colombiana de Geografia 24(2), 35–51 (2014).  https://doi.org/10.15446/rcdg.v24n2.50206CrossRefGoogle Scholar
  5. Herrera Cepeda, G.: Gestión del riesgo y atención de desastres con Profesionales Oficiales de la Reserva del Ejército colombiano. Revista Científica General José María Córdova 16(22), 1–20 (2018). ISSN 1900-6586CrossRefGoogle Scholar
  6. Chatzigeorgiou, A., Stephanides, G.: Evaluation of a queuing theory and systems modeling course based on UML (2006).  https://doi.org/10.1109/ICALT.2006.1652486
  7. Estrat, S.: Informe de riesgos mundiales 2018. 13. a edición (2018)Google Scholar
  8. Farra, S.L., Miller, E.T., Hodgson, E.: Virtual reality disaster training: translation to practice. Nurse Educ. Pract. 15(1), 53–57 (2015).  https://doi.org/10.1016/j.nepr.2013.08.017CrossRefGoogle Scholar
  9. de Desarrollo, B.I.: Indicadores de Riesgo de Desastre y de Gestión de Riesgos (2015)Google Scholar
  10. Jung, J., et al.: Monte Carlo analysis of plug-in hybrid vehicles and distributed energy resource growth with residential energy storage in Michigan. Appl. Energy 108, 218–235 (2013).  https://doi.org/10.1016/j.apenergy.2013.03.033CrossRefGoogle Scholar
  11. Khan, H., Vasilescu, L.G., Khan, A.: Disaster management cycle – a theoretical approach. University of Science and Technology, Pakistan (2010)Google Scholar
  12. Kobayashi, M.: Experience of infrastructure damage caused by the Great East Japan Earthquake and countermeasures against future disasters. IEEE Commun. Mag. 52(3), 23–29 (2014).  https://doi.org/10.1109/MCOM.2014.6766080CrossRefGoogle Scholar
  13. Laframboise, N., Loko, B.: Natural disasters: mitigating impact, managing risks. International Monetary Fund (2012)Google Scholar
  14. Lisboa, C., Santana, M., Carlucci, R., Lankalapalli, N., De Carvalho, S.: Performance evaluation of complex systems: queuing statecharts approach. In: Proceedings of I Workshop on Performance of Computational Systems (WPerformance)/Brazilian Computing Conference (SBC), Florianòpolis, SC, Brazil, July 2002 (2002)Google Scholar
  15. Lucia, E., Leon, G.: Criminalidad Derivada De Desastres Naturales: Propuesta Para La Generación De Políticas Públicas Ervyn Norza Céspedes, Elba Lucia Granados Leon, Vanesa Sarmiento Dussán, Dayana Fonseca Hernández, Giovanni Torres Guman (2014)Google Scholar
  16. Normal, binomial, poisson distributions (2014)Google Scholar
  17. Sandoval, V., Voss, M.: Disaster governance and vulnerability: the case of Chile, December 2016.  https://doi.org/10.17645/pag.v4i4.743
  18. Singer, M., Donoso, P., Scheller-Wolf, A.: Una introducción a la teoría de colas aplicada a la gestión de servicios. Rev. ABANTE 11(2), 93–120 (2008)Google Scholar
  19. Solinska-Nowak, A., et al.: An overview of serious games for disaster risk management – prospects and limitations for informing actions to arrest increasing risk. Int. J. Disaster Risk Reduct. 31, 1013–1029 (2018).  https://doi.org/10.1016/j.ijdrr.2018.09.001CrossRefGoogle Scholar
  20. Tapia, E., Reddy, E., Oros, L.: Retos e incertidumbres en la predicción y prevención del riesgo sísmico. Rev. de Ingeniería Sismica 96, 66–87 (2017)CrossRefGoogle Scholar
  21. Varela, J.E.: 2 Teoría de colas o líneas de espera, pp. 17–33 (2010)Google Scholar
  22. Zonouz, S.: A fuzzy Markov model for scalable reliability analysis of advanced metering infrastructure. In: Innovative Smart Grid Technologies (ISGT), pp. 1–5 (2012).  https://doi.org/10.1109/ISGT.2012.6175770

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Darin Mosquera
    • 3
  • Edwin Rivas
    • 3
  • Luis Alejandro Arias
    • 1
    • 2
    Email author
  1. 1.Universidad ECCIBogotáColombia
  2. 2.Autónoma de ColombiaBogotáColombia
  3. 3.Faculty of EngineeringUniversidad Distrital Francisco José de CaldasBogotáColombia

Personalised recommendations