Algorithms for the Management of Electrical Demand Using a Domotic System with Classification of Electrical Charges

  • Kevin Andrés Suaza Cano
  • Javier Ferney Castillo GarciaEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1194)


Electricity demand management is the process of making appropriate use of energy resources. This process is carried out with the aim of achieving a reduction in electricity consumption. The electrical demand management algorithms are implemented in a domotic system that has the capacity to identify electrical loads using artificial neural networks. An analysis was carried out on the most important physical variables in the home, which have a direct relationship with energy consumption, and strategies were proposed on how to carry out a correct control over these, in search of generating energy savings without affecting comfort levels in the home. It was obtained, as a result that it is possible to generate an energy saving of 63% in comparison to a traditional house, this without affecting to a great extent the comfort of the user and allowing a great level of automation in the home.


Domotic system Neural network Demand management 


  1. 1.
    Siswanto, A., Katuk, N., Ku-Mahamud, K.R.: Biometric fingerprint architecture for home security system. In: IACE (2016)Google Scholar
  2. 2.
    Adriano, D.B., Budi, W.A.C.: IoT-based integrated home security and monitoring system. In: IOP Conference on Series: Journal of Physics (2018)Google Scholar
  3. 3.
    Guerard, G., Levy, L.-N., Pousseur, H.: Multi-agent Model for Domotics and Smart Houses. Scitepress (2018)Google Scholar
  4. 4.
    Escobar Gallardo, E., Villazón, A.: Sistema de Monitoreo Energético y Control Domótico Basado en Tecnología “Internet De Las Cosas”. Investigación & Desarrollo (2018)Google Scholar
  5. 5.
    Ciabattoni, L., Ferracuti, F., Ippoliti, G., Longhi, S., Turri, G.: IoT based indoor personal comfort levels monitoring. In: ICCE (2016)Google Scholar
  6. 6.
    Ammari, T., Kaye, J., Tsai, J.Y., Bentley, F.: Music, search, and IoT: how people (really) use voice assistants. ACM Trans. Comput.-Hum. 26, 1–28 (2019)Google Scholar
  7. 7.
    Hassanpour, V., Rajabi, S., Shayan, Z., Hafezi, Z., Arefi, M.M.: Low-cost home automation using arduino and modbus protocol. In: ICCIA (2017)Google Scholar
  8. 8.
    Ovalles, F.O., Bolivar, A.E., Rodriguez, A.J.: Use of an embedded system with WiFi technology for domotic. IOP Publishing (2018)Google Scholar
  9. 9.
    Dobrescu, L.: Domotic embedded system. In: ECAI (2014)Google Scholar
  10. 10.
    Banu, B., Merlin, S., Suhitha, S.: Domotics using labview. Int. J. Res. 5, 1–7 (2018)Google Scholar
  11. 11.
    Morón, C., Payán, A., García, A., Bosquet, F.: Domotics project housing block. In: MDPI (2016)Google Scholar
  12. 12.
    García, V.H., Vega, N.: Low power sensor node applied to domotic using IoT. In: Mata-Rivera, M.F., Zagal-Flores, R. (eds.) WITCOM 2018. CCIS, vol. 944, pp. 56–69. Springer, Cham (2018). Scholar
  13. 13.
    Moya, F., Da Silva, L., Lopez, J.: A mathematical model for the optimal scheduling of smart home electrical loads. WSEAS Trans. Power Syst. 13, 300–310 (2018)Google Scholar
  14. 14.
    Toro Betancur, V.: Algoritmo de Estimación de Parámetros y Modulación de Una Señal Recibida Por Un SDR. EAFIT (2017)Google Scholar
  15. 15.
    Cherraqi, E.B., Maach, A.: Load signatures identification based on real power fluctuations. In: Noreddine, G., Kacprzyk, J. (eds.) ITCS 2017. AISC, vol. 640, pp. 143–152. Springer, Cham (2018). Scholar
  16. 16.
    García Ortiz, M.: Adaptación y Aplicación de la Transformada de Hilbert-Huang a Sistemas Eléctricos: Aplicaciones en el Estudio de la Gestión de la Demanda y Caracterización de Transitorios. Springer, Cham (2016)Google Scholar
  17. 17.
    Bollen, M.H.J., Gu, I.Y.H.: Signal Processing of Power Quality Disturbances. IEEE Press Series on Power Engineering, Danvers (2006)Google Scholar
  18. 18.
    Witten, I.H., Eibe, F., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques. Elsevier, Cambridge (2017)Google Scholar
  19. 19.
    Zhang, Y., Yang, Y.: Cross-validation for selecting a model selection procedure. J. Econom. 187, 95–112 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Chen, X., Liu, G., Shi, J., Xu, J., Xu, B.: Distilled binary neural network for monaural speech separation. In: IJCNN (2018)Google Scholar
  21. 21.
    Zhang, H., Wang, Z., Liu, D.: A comprehensive review of stability analysis of continuous-time recurrent neural networks. IEEE Trans. Neural Netw. Learn. Syst. 25, 1229–1262 (2014)CrossRefGoogle Scholar
  22. 22.
    Khosrojerdi, S., Vakili, M., Kalhor, K.: Thermal conductivity modeling of graphene nanoplatelets/deionized water nanofluid by MLP neural network and theoretical modeling using experimental results. Int. Commun. Heat Mass Transf. 74, 11–17 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Kevin Andrés Suaza Cano
    • 1
  • Javier Ferney Castillo Garcia
    • 1
    Email author
  1. 1.Universidad Santiago de CaliCaliColombia

Personalised recommendations