Advertisement

Bio-mechanical Analysis of Knee Stresses Based on Finite Elements Approach

  • Gustavo Caiza
  • David Lanas
  • Juan Lanas-Perez
  • Luis E. Mayorga
  • Marcelo V. GarciaEmail author
Conference paper
  • 38 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 1193)

Abstract

Software tools based on finite element analysis are widely used for structural mechanical analysis and even in other areas such as medicine. This research analyzes the efforts that occur in the two most important bones that are part of the knee joint from computerized axial tomography (CT) and proposes a methodology based on finite element meshes to obtain these efforts. From the simulation of the geometry of a real knee, stress-strain curves have been developed. The results obtained from the simulation showed that the stress pattern is at a value of 10.97 Mpa in the area between the intercondylar eminence and the intercondylar notch and a unit strain of 1.05 \(\times \) 10 − 2 mm for the femur and 8, 5 \(\times \) 10 − 4 mm in warm.

Keywords

Articulation Finite elements Stress Strain Computed axial tomography (CT) 

Notes

Acknowledgment

This work was financed by Universidad Técnica de Ambato (UTA) and their Research and Development Department (DIDE) under project CONIN-P-256-2019.

References

  1. 1.
    Abdallah, A.A., Radwan, A.Y.: Biomechanical changes accompanying unilateral and bilateral use of laterally wedged insoles with medial arch supports in patients with medial knee osteoarthritis. Clin. Biomech. 26(7), 783–789 (2011).  https://doi.org/10.1016/j.clinbiomech.2011.03.013, https://linkinghub.elsevier.com/retrieve/pii/S0268003311000957CrossRefGoogle Scholar
  2. 2.
    Barreto Andrade, J., Villarroya-Aparicio, A., Calero Morales, S.: Biomecánica de la marcha atlética. Análisis cinemático de su desarrollo y comparación con la marcha normal. Revista Cubana de Investigaciones Biomédicas 36(2), 53–69 (2017)Google Scholar
  3. 3.
    Beillas, P., Lee, S.W., Tashman, S., Yang, K.H.: Sensitivity of the Tibio-femoral response to finite element modeling parameters. Comput. Methods Biomech. Biomed. Eng. 10(3), 209–221 (2007).  https://doi.org/10.1080/10255840701283988CrossRefGoogle Scholar
  4. 4.
    Butler, A.B., Caruntu, D.I., Freeman, R.A.: Knee joint biomechanics for various ambulatory exercises using inverse dynamics in OpenSim. In: Biomedical and Biotechnology Engineering. American Society of Mechanical Engineers, Tampa, Florida, USA, vol. 3, November 2017.  https://doi.org/10.1115/IMECE2017-70988
  5. 5.
    Cheung, J.T.M., Zhang, M.: A 3-dimensional finite element model of the human foot and ankle for insole design. Arch. Phys. Med. Rehabil. 86(2), 353–358 (2005).  https://doi.org/10.1016/j.apmr.2004.03.031, https://linkinghub.elsevier.com/retrieve/pii/S0003999304004708CrossRefGoogle Scholar
  6. 6.
    Cheung, J.T.M., Zhang, M.: Parametric design of pressure-relieving foot orthosis using statistics-based finite element method. Med. Eng. Phys. 30(3), 269–277 (2008).  https://doi.org/10.1016/j.medengphy.2007.05.002, https://linkinghub.elsevier.com/retrieve/pii/S1350453307000884CrossRefGoogle Scholar
  7. 7.
    Cheung, J.T.M., Zhang, M., Leung, A.K.L., Fan, Y.B.: Three-dimensional finite element analysis of the foot during standing–a material sensitivity study. J. Biomech. 38(5), 1045–1054 (2005).  https://doi.org/10.1016/j.jbiomech.2004.05.035, https://linkinghub.elsevier.com/retrieve/pii/S0021929004002842CrossRefGoogle Scholar
  8. 8.
    Farrokhi, S., Keyak, J., Powers, C.: Individuals with patellofemoral pain exhibit greater patellofemoral joint stress: a finite element analysis study. Osteoarthr. Cartil. 19(3), 287–294 (2011).  https://doi.org/10.1016/j.joca.2010.12.001, https://linkinghub.elsevier.com/retrieve/pii/S1063458410003985CrossRefGoogle Scholar
  9. 9.
    Guess, T., Razu, S., Jahandar, H.: Evaluation of knee ligament mechanics using computational models. J. Knee Surg. 29(02), 126–137 (2016).  https://doi.org/10.1055/s-0036-1571954CrossRefGoogle Scholar
  10. 10.
    Hatano, G., Krzysztof, K., Sauer, P., Morita, Y.: Kinematic simulator of e-Knee robo that reproduces human knee-joint movement. In: 2019 12th International Workshop on Robot Motion and Control (RoMoCo), Poznań, Poland, pp. 74–79. IEEE, July 2019.  https://doi.org/10.1109/RoMoCo.2019.8787349, https://ieeexplore.ieee.org/document/8787349/
  11. 11.
    Kakihana, W., Akai, M., Yamasaki, N., Takashima, T., Nakazawa, K.: Changes of joint moments in the gait of normal subjects wearing laterally wedged insoles. Am. J. Phys. Med. Rehabil. 83(4), 273–278 (2004)CrossRefGoogle Scholar
  12. 12.
    Kerrigan, D., Lelas, J.L., Goggins, J., Merriman, G.J., Kaplan, R.J., Felson, D.T.: Effectiveness of a lateral-wedge insole on knee varus torque in patients with knee osteoarthritis. Arch. Phys. Med. Rehabil. 83(7), 889–893 (2002).  https://doi.org/10.1053/apmr.2002.33225, https://linkinghub.elsevier.com/retrieve/pii/S000399930200000XCrossRefGoogle Scholar
  13. 13.
    Liu, X., Zhang, M.: Redistribution of knee stress using laterally wedged insole intervention: finite element analysis of knee-ankle-foot complex. Clin. Biomech. 28(1), 61–67 (2013).  https://doi.org/10.1016/j.clinbiomech.2012.10.004, https://linkinghub.elsevier.com/retrieve/pii/S0268003312002318CrossRefGoogle Scholar
  14. 14.
    Madeti, B.K., Chalamalasetti, S.R., Sundara siva rao Bolla Pragada, S.K.: Biomechanics of knee joint – a review. Front. Mech. Eng. 10(2), 176–186 (2015).  https://doi.org/10.1007/s11465-014-0306-xCrossRefGoogle Scholar
  15. 15.
    Maly, M.R., Culham, E.G., Costigan, P.A.: Static and dynamic biomechanics of foot orthoses in people with medial compartment knee osteoarthritis. Clin. Biomech. (Bristol, Avon) 17(8), 603–610 (2002)CrossRefGoogle Scholar
  16. 16.
    Naghibi Beidokhti, H., Janssen, D., van de Groes, S., Hazrati, J., Van den Boogaard, T., Verdonschot, N.: The influence of ligament modelling strategies on the predictive capability of finite element models of the human knee joint. J. Biomech. 65, 1–11 (2017).  https://doi.org/10.1016/j.jbiomech.2017.08.030, https://linkinghub.elsevier.com/retrieve/pii/S0021929017304529CrossRefGoogle Scholar
  17. 17.
    Peña, E., Calvo, B., Martínez, M., Doblaré, M.: A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J. Biomech. 39(9), 1686–1701 (2006).  https://doi.org/10.1016/j.jbiomech.2005.04.030, https://linkinghub.elsevier.com/retrieve/pii/S0021929005002113CrossRefGoogle Scholar
  18. 18.
    Ramaniraka, N., Terrier, A., Theumann, N., Siegrist, O.: Effects of the posterior cruciate ligament reconstruction on the biomechanics of the knee joint: a finite element analysis. Clin. Biomech. 20(4), 434–442 (2005).  https://doi.org/10.1016/j.clinbiomech.2004.11.014, https://linkinghub.elsevier.com/retrieve/pii/S0268003304002888CrossRefGoogle Scholar
  19. 19.
    Räsänen, L.P., Mononen, M.E., Lammentausta, E., Nieminen, M.T., Jurvelin, J.S., Korhonen, R.K.: Three dimensional patient-specific collagen architecture modulates cartilage responses in the knee joint during gait. Comput. Methods Biomech. Biomed. Eng. 19(11), 1225–1240 (2016).  https://doi.org/10.1080/10255842.2015.1124269CrossRefGoogle Scholar
  20. 20.
    Scherer, T.P., Hoechel, S., Müller-Gerbl, M., Nowakowski, A.M.: Comparison of knee joint orientation in clinically versus biomechanically aligned computed tomography coordinate system. J. Orthop. Transl. 16, 78–84 (2019).  https://doi.org/10.1016/j.jot.2018.07.005, https://linkinghub.elsevier.com/retrieve/pii/S2214031X18300779CrossRefGoogle Scholar
  21. 21.
    Shirazi, R., Shirazi-Adl, A.: Computational biomechanics of articular cartilage of human knee joint: effect of osteochondral defects. J. Biomech. 42(15), 2458–2465 (2009).  https://doi.org/10.1016/j.jbiomech.2009.07.022, https://linkinghub.elsevier.com/retrieve/pii/S0021929009004266CrossRefGoogle Scholar
  22. 22.
    Valencia-Aguirre, F., Mejía-Echeverria, C., Erazo-Arteaga, V.: Desarrollo de una prótesis de rodilla para amputaciones transfemorales usando herramientas computacionales. Revista UIS Ingenierías 16(2), 23–34 (2017)CrossRefGoogle Scholar
  23. 23.
    Yu, J., Cheung, J.T.M., Fan, Y., Zhang, Y., Leung, A.K.L., Zhang, M.: Development of a finite element model of female foot for high-heeled shoe design. Clin. Biomech. 23, S31–S38 (2008).  https://doi.org/10.1016/j.clinbiomech.2007.09.005, https://linkinghub.elsevier.com/retrieve/pii/S0268003307002082CrossRefGoogle Scholar
  24. 24.
    Zhang, R., Liu, H., Meng, F., Ming, A., Huang, Q.: Cylindrical inverted pendulum model for three dimensional bipedal walking. In: 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), Beijing, China, pp. 1010–1016. IEEE, November 2018.  https://doi.org/10.1109/HUMANOIDS.2018.8624984, https://ieeexplore.ieee.org/document/8624984/

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Universidad Politecnica Salesiana, UPSQuitoEcuador
  2. 2.Instituto Superior Tecnológico Superior Cotopaxi, IstCotopaxiCotopaxiEcuador
  3. 3.Universidad de las Américas, UDLAQuitoEcuador
  4. 4.Universidad Estatal de Quevedo, UTEQQuevedoEcuador
  5. 5.Universidad Tecnica de Ambato, UTAAmbatoEcuador

Personalised recommendations