Advertisement

Software to Determine the Readability of Written Documents by Implementing a Variation of the Gunning Fog Index Using the Google Linguistic Corpus

  • Luis Carlos Rodríguez Timaná
  • Diego Fernando Saavedra Lozano
  • Javier Ferney Castillo GarcíaEmail author
Conference paper
  • 37 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 1193)

Abstract

In English linguistics the Gunning Fog Index is used to determine the readability of texts. This methodology isn’t as effective in the Spanish language because the complexity of words isn’t determined by the number of syllables, unlike what happens in English. Therefore, a software was developed that allows us to estimate the readability of an academic text written in Spanish in a quantitative way. This software allows to compare the traditional methodology of the Gunning fog index and a modification to it, using the corpus linguistics for the Spanish language, based on thousands of texts digitized by Google, where the frequency of use of certain words is related. Texts produced by students from first to last semester were evaluated. Each text was subjected to the Gunning fog index assessment methodology and the corpus methodology, changing the percentage of complex words to the percentage of unknown words. In the evaluation of first semester texts it was found that the average fog index was 29.25, and an average of 37.9 complex words, for these same texts was found a modified fog index of 18.62 and 5.1 unknown words. On the other hand, for the evaluation of the texts produced in the last semester, the average fog index was 27.55 and an average of 51.4 complex words, with the modified fog index was an average of 15.08 and 7.1 unknown words. With this study, aspects related to the best use of punctuation marks and the increase of vocabulary related to the profession can be identified in a quantitative way.

Keywords

Corpus linguistics Gunning Fog Index 

References

  1. 1.
    Ferrando Belart, V.: La legibilidad: un factor fundamental para comprender un texto. Aten. Primaria 34(3), 143–146 (2004)CrossRefGoogle Scholar
  2. 2.
    Brucker, C.: Arkansas tech writing. English 2053(June), 109 (2009)Google Scholar
  3. 3.
    Mata San Juan, H.: Herramienta de análisis de legibilidad de contenidos educativos. Graduate theses, Departamento de Informática, Universidad Carlos III de Madrid (2017)Google Scholar
  4. 4.
    Frías Delgado, A.: Distribución De Frecuencias De La Longitud De Las Palabras En Español. A Survey of corpus-based Research, pp. 756–770 (2009)Google Scholar
  5. 5.
  6. 6.
    Pitkowski, E.F., Vásquez Gamarra, J.: Tinkuy Boletin de investigación y debate. El uso los corpus lingüísticos como Herram. pedagógica para la enseñanza y Aprendiz. ELE*, no. 11, pp. 31–51 (2005)Google Scholar
  7. 7.
    Mac Lean, A.: Comunicacion Escrita, pp. 5–17 (1975)Google Scholar
  8. 8.
    Zamanian, M., Heydari, P.: Readability of texts: state of the art. Theory Pract. Lang. Stud. 2(1), 43–53 (2012)CrossRefGoogle Scholar
  9. 9.
    Felipe Ovares, B., José Alberto, R.B.: Variación del Índice de Niebla Usando un Corpus Obtenido a Partir de los Libros Digitalizados por Google (2010)Google Scholar
  10. 10.
    Barrio-Cantalejo, I.M., Simón-Lorda, P., Melguizo, M., Escalona, I., Marijuán, M.I., Hernando, P.: Validación de la escala INFLESZ para evaluar la legibilidad de los textos dirigidos a pacientes. An. Sist. Sanit. Navar. 31(2), 135–152 (2008)CrossRefGoogle Scholar
  11. 11.
    Wang, L.W., Miller, M.J., Schmitt, M.R., Wen, F.K.: Assessing readability formula differences with written health information materials: application, results, and recommendations. Res. Soc. Adm. Pharm. 9(5), 503–516 (2013)CrossRefGoogle Scholar
  12. 12.
    Navarro-Royo, C., Monteagudo-Piqueras, O., Rodríquez-Suárez, L., Valentín-López, B., García-Caballero, J.: Legibilidad de los documentos de consentimiento informado del hospital La Paz. Rev. Calid. Asist. 17(6), 331–336 (2002)CrossRefGoogle Scholar
  13. 13.
    Simón Lorda, P., Barrio Cantalejo, I.M., Carro, L.C.: Legibilidad de los formularios escritos de consentimiento informado (1996)Google Scholar
  14. 14.
    Blanco Pérez, A., Gutiérrez Couto, U.: Legibilidad de las páginas web sobre salud dirigidas a pacientes y lectores de la población general. Rev. Esp. Salud Publica 76(4), 321–331 (2002)CrossRefGoogle Scholar
  15. 15.
    Fitzsimmons, P.R., Michael, B.D., Hulley, J.L., Scott, G.O.: A readability assessment of online Parkinson’s disease information. J. R. Coll. Phys. Edinb. 40(4), 292–296 (2010)CrossRefGoogle Scholar
  16. 16.
    Friedman, D.B., Hoffman-Goetz, L.: A systematic review of readability and comprehension instruments used for print and web-based cancer information. Heal. Educ. Behav. 33(3), 352–373 (2006)CrossRefGoogle Scholar
  17. 17.
    Svider, P.F., et al.: Readability assessment of online patient education materials from academic otolaryngology-head and neck surgery departments. Am. J. Otolaryngol. - Head Neck Med. Surg. 34(1), 31–35 (2013)Google Scholar
  18. 18.
    Badarudeen, S., Sabharwal, S.: Assessing readability of patient education materials: current role in orthopaedics. Clin. Orthop. Relat. Res. 468(10), 2572–2580 (2010)CrossRefGoogle Scholar
  19. 19.
    O’Mahony, M.P., Smyth, B.: Using readability tests to predict helpful product reviews (2010)Google Scholar
  20. 20.
    Hu, N., Bose, I., Koh, N.S., Liu, L.: Manipulation of online reviews: an analysis of ratings, readability, and sentiments. Decis. Support Syst. 52(3), 674–684 (2012)CrossRefGoogle Scholar
  21. 21.
    Seely, J.: Oxford Guide to Effective Writing and Speaking: How to Communicate Clearly (2013)Google Scholar
  22. 22.
    Aluisio, S., Specia, L., Gasperin, C., Scarton, C.: Readability Assessment for Text Simplification (2010)Google Scholar
  23. 23.
    Montemurro, M.A.: Beyond the Zipf-Mandelbrot law in quantitative linguistics. Phys. A 300, 567–578 (2001)CrossRefGoogle Scholar
  24. 24.
    Michel, J.-B., et al.: Quantitative analysis of culture using millions of digitized books. Science 331(6014), 176–182 (2011)CrossRefGoogle Scholar
  25. 25.
    Pechenick, E.A., Danforth, C.M., Dodds, P.S.: Characterizing the Google Books corpus: strong limits to inferences of socio-cultural and linguistic evolution. PLoS ONE 10(10), e0137041 (2015)CrossRefGoogle Scholar
  26. 26.
    Cofré, N., Arce, J.: Librería para obtener las silabas, posición de la silaba tónica, tipo acentuación, hiato, diptongo y triptongo de una palabra. https://github.com/ncofrem/silabajs. Accessed 14 Oct 2019
  27. 27.
    Fisher, J.: API for Google Ngram Viewer. https://jameshfisher.com/2018/11/25/google-ngram-api/. Accessed 14 Oct 2019

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Grupo de Investigación en Electrónica Industrial y Ambiental – GIEIAMUniversidad Santiago de CaliCaliColombia

Personalised recommendations