Advertisement

Analysis of Essentially Non-oscillatory Numerical Techniques for the Computation of the Level Set Method

  • Israel PinedaEmail author
  • Daniela ArellanoEmail author
  • Roberth ChachaloEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1193)

Abstract

In this paper, we analyze the Upwind Differencing and the Essentially Non-Oscillatory (ENO) schemes for the level set method during the evolution of interfaces. Our evolution experiments use different vector fields to test the behavior of the interface in different aspects. The experiments presented in this work are: evolution of a circle in a rotating field, shrinking and expanding of a square, Zalesak’s disk revolution, and single-vortex evolution. Each one of them provides a different view of the strengths and weaknesses of the method. The experiments use the percentage of area loss, the \(L_{1}\) error, and the order of convergence as accuracy metrics. We compare the different techniques, report our results, and provide conclusions.

Keywords

Essentially non-oscillatory Level set method Simulation 

References

  1. 1.
    Crandall, M.G., Lions, P.L.: Two approximations of solutions of Hamilton-Jacobi equations. Math. Comput. 43(167), 1 (1984).  https://doi.org/10.2307/2007396. http://www.ams.org/jourcgi/jour-getitem?pii=S0025-5718-1984-0744921-8MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Enright, D., Fedkiw, R., Ferziger, J., Mitchell, I.: A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183(1), 83–116 (2002).  https://doi.org/10.1006/jcph.2002.7166. http://www.sciencedirect.com/science/article/pii/S0021999102971664MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Jiang, G.S., Peng, D.: Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21(6), 2126–2143 (2000).  https://doi.org/10.1137/S106482759732455X. http://epubs.siam.org/doi/abs/10.1137/S106482759732455XMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Góes Maciel, E.S., de Andrade, C.R.: Comparison among unstructured TVD, ENO and UNO schemes in two- and three-dimensions. Appl. Math. Comput. 321, 130–175 (2018).  https://doi.org/10.1016/j.amc.2017.10.026MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Mazumder, S.: Numerical Methods for Partial Differential Equations: Finite Difference and Finite, vol. Methods. Elsevier, Amsterdam (2015)zbMATHGoogle Scholar
  6. 6.
    Osher, S., Fedkiw, R., Piechor, K.: Level set methods and dynamic implicit surfaces 57 (2004).  https://doi.org/10.1115/1.1760520
  7. 7.
    Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988).  https://doi.org/10.1016/0021-9991(88)90002-2. http://www.sciencedirect.com/science/article/pii/0021999188900022MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Pineda, I., Gwun, O.: Leaf modeling and growth process simulation using the level set method. IEEE Access 5, 15948–15959 (2017).  https://doi.org/10.1109/ACCESS.2017.2738032. http://ieeexplore.ieee.org/document/8007190/CrossRefGoogle Scholar
  9. 9.
    Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988).  https://doi.org/10.1016/0021-9991(88)90177-5. http://linkinghub.elsevier.com/retrieve/pii/0021999188901775MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Sun, Z., Shu, C.: Strong stability of explicit Runge-Kutta time discretizations. Society 32(5), 3020–3038 (2019)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Yachay Tech UniversityUrcuquíEcuador

Personalised recommendations