Advertisement

Simulation Tools for Solving Engineering Problems. Case Study

  • Fabián Cuzme-RodríguezEmail author
  • Ana Umaquinga-Criollo
  • Luis Suárez-Zambrano
  • Henry Farinango-Endara
  • Hernán Domínguez-Limaico
  • Mario Mediavilla-Valverde
Conference paper
  • 37 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 1193)

Abstract

The areas of Engineering in Applied Sciences have contributed significantly to the social, economic and technological advances of the world, being of interest to the academy mainly in the university system and specialization in Ecuador and in several countries both in the teaching-learning process as well as in research, which makes it increasingly stronger and proposes better and new solutions to environmental problems. This article performs a quantitative, descriptive and systemic analysis, which combines with the analysis of the ISO/IEC 25010 standard considers criteria such as functionality, performance, compatibility, usability, reliability, maintainability, portability to evaluate the quality of the software; The analysis involves simulation tools immersed in the teaching-learning processes of the engineering area with the determination to identify the tools used to solve specific problems in this field, particularly in the Telecommunications Engineering Degree at the “Universidad Técnica del Norte” University. This study is based on the opinion of experts in the university and business field who validate the established criteria. The results of this article identify the use of the different simulation tools in the university education and research environment, in addition to promoting the inclusion of these tools in the process of training students so that they can propose solutions at a scientific level and/or technological.

Keywords

Simulators ISO-25010 NS2 NS3 MATLAB 

References

  1. 1.
    Hernández, W.E.C., Osario, M.E.C.: Utilización de herramientas software para el modelado y la simulación de redes de comunicaciones. Gerenc Tecnológica Informática 5, 73–81 (2006)Google Scholar
  2. 2.
    Balasundram, A.: Poster: a comparison study of Wi-Fi direct and dedicated short range communication for intelligent transport services. In: MobiSys 2016 Companion - Companion Publication of the 14th Annual International Conference on Mobile Systems, Applications, and Services, p. 10 (2016)Google Scholar
  3. 3.
    Torres, J.A., Arias Figueroa, D., Díaz, J.: Herramientas de software de simulación para redes de comunicaciones (2016)Google Scholar
  4. 4.
    Dávalos, A., Paz, L., Cadavid, A., Mejía, A.: Método de evaluación y selección de herramientas de simulación de redes (2011)Google Scholar
  5. 5.
    Coello Ojeda, M.A., Sempere Paya, V.M., Rodríguez Hernandez, M.A.: Caracterización y Simulación de Fuentes de Tráfico en Smart Cities (2014)Google Scholar
  6. 6.
    Chileg, G., Vinicio, G.: Empleo de la herramienta computacional NS2 para simular el comportamiento de una red de telecomunicaciones móviles celulares cuando se utiliza el protocolo IP móvil v6 (MIPv6) en aplicaciones de voz (2009)Google Scholar
  7. 7.
    Gafur, A.M., Ben Saleh, A.: Capacity utilization based on contention window management in mobile ad hoc network. Int. J. Numer. Model Electron. Netw. Dev. Fields 32 (2019).  https://doi.org/10.1002/jnm.2646
  8. 8.
    González, S., Javier, L.: Simulador de enlace de fibra optica punto a punto usando interfaz grafica de MATLAB, p. 122 (2012)Google Scholar
  9. 9.
    Calle, M.A., Tovar, J.D., Castaño-Pino, Y.J., Cuéllar, J.C.: Comparación de Parámetros para una Selección Apropiada de Herramientas de Simulación de Redes. Inf Tecnológica 29, 253–266 (2018).  https://doi.org/10.4067/s0718-07642018000600253CrossRefGoogle Scholar
  10. 10.
    López Echeverry, A., García Quiroz, N.: Simulación de tráfico en redes inalambricasmediante NS2. Sci. Tech. 1, 155–160 (2010).  https://doi.org/10.22517/23447214.1805
  11. 11.
    Ben Fraj, R., Beroulle, V., Fourty, N., Meddeb, A.: An evaluation of UHF RFID anti-collision protocols with NS2. In: 2018 9th IFIP International Conference on New Technologies, Mobility and Security, NTMS 2018 – Proceedings, pp. 1–6 (2018)Google Scholar
  12. 12.
    Li, J., Zhang, Y., Zhao, J., et al.: NS-2 simulation of VANET for safety applications: issues and solutions. In: ACM International Conference Proceeding Series, pp. 67–72 (2017)Google Scholar
  13. 13.
    Carrión, B., Delgado, L.: Simulación y análisis de redes esporádicas móviles Ad-Hoc (2015)Google Scholar
  14. 14.
    Pan, J.: A survey of network simulation tools: current status and future development. CSE567M Comput. Syst. Anal. (2008)Google Scholar
  15. 15.
    Shin, J.Y., Jang, J.W., Kim, J.M.: Result based on NS2, simulation and emulation verification. In: Proceedings - 2009 International Conference on New Trends in Information and Service Science, NISS 2009, pp. 807–811 (2009)Google Scholar
  16. 16.
    Abu-Mahfouz, A.M., Hancke, G.P.: NS-2 extension to simulate localization system in wireless sensor networks. In: IEEE AFRICON Conference (2011)Google Scholar
  17. 17.
    Aranda, J.M.: Ingenieria. Universidad Distrital Francisco Jose de Caldas (2015)Google Scholar
  18. 18.
    Sharif, M., Sadeghi-Niaraki, A.: Ubiquitous sensor network simulation and emulation environments: a survey. J. Netw. Comput. Appl. 93, 150–181 (2017).  https://doi.org/10.1016/j.jnca.2017.05.009CrossRefGoogle Scholar
  19. 19.
    Yu, H., Liang, G., Zhao, Y.: NS3-based simulation system in heterogeneous wireless network. In: 11th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM 2015), pp. 1–6. Institution of Engineering and Technology (2016)Google Scholar
  20. 20.
    Borja, N.: Simulación, modelamiento y evaluación de los protocolos de routing en redes MANET con aplicaciones de video mediante plataformas opensource de eventos discretos. Thesis (2017)Google Scholar
  21. 21.
    Kulgachev, V., Jasani, H.: 802.11 networks performance evaluation using OPNET. In: SIGITE 2010 - Proceedings of the 2010 ACM Conference on Information Technology Education, pp. 149–152 (2010)Google Scholar
  22. 22.
    Ayyoub, B.: Wired and WLAN Optimal Design Using OPNETTM IT GURU (2014)CrossRefGoogle Scholar
  23. 23.
    del Rosario Cruz Felipe, M., Martínez Gómez, R., Hierrezuelo Pérez, C.: Análisis de tráfico en la red UCI mediante la simulación. Rev Telemática 12, 76–89 (2013)Google Scholar
  24. 24.
    Morales Rodríguez, M., Calle Pérez, M.A., Tovar Vanegas, J.D., Cuéllar Quiñonez, J.C.: Simulando con OMNET, Selección de la herrameinta y utilización. Universidad ICESI (2013)Google Scholar
  25. 25.
    Aroua, S., El Korbi, I., Ghamri-Doudane, Y., Saidane, L.A.: A distributed cooperative spectrum resource allocation in smart home cognitive wireless sensor networks. In: 2017 IEEE Symposium on Computers and Communications (ISCC), pp. 754–759 (2017)Google Scholar
  26. 26.
    Carmona, J.G.: Propuesta de manual de prácticas de laboratorio de redes utilizando el emulador GNS3 (2017)Google Scholar
  27. 27.
    Djenane, N., Benaouda, A., Harous, S.: Simulation of a VPN implementation based on MPLS protocol, a case study: VPN-MPLS for MSN-AT. In: MoMM2009 - The 7th International Conference on Advances in Mobile Computing and Multimedia, pp. 589–593 (2009)Google Scholar
  28. 28.
    Rajaram, M.L., Kougianos, E., Mohanty, S.P., Choppali, U.: Wireless sensor network simulation frameworks: a tutorial review: MATLAB/Simulink bests the rest. IEEE Consum. Electron. Mag. 5, 63–69 (2016).  https://doi.org/10.1109/MCE.2016.2519051CrossRefGoogle Scholar
  29. 29.
    Babich, F., Comisso, M., Dorni, A., et al.: The simulation of smart antennas in network simulator-2 using MATLAB. In: 2009 IEEE 14th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks, CAMAD 2009 (2009)Google Scholar
  30. 30.
    Pau, G., Salerno, V.M.: Wireless sensor networks for smart homes: a fuzzy-based solution for an energy-effective duty cycle. Electronics (2019).  https://doi.org/10.3390/electronics8020131CrossRefGoogle Scholar
  31. 31.
    ISO: ISO 25010 (2011). iso25000.com
  32. 32.
    Ali, Q.I., Abdulmaowjod, A., Mohammed, H.M.: Simulation & performance study of wireless sensor network (WSN) using MATLAB. In: EPC-IQ01 2010 - 2010 1st International Conference on Energy, Power and Control, pp. 307–314 (2010)Google Scholar
  33. 33.
    Ali, Q.I.: Simulation framework of wireless sensor network (WSN) using MATLAB/SIMULINK software. In: MATLAB - A Fundamental Tool for Scientific Computing and Engineering Applications, vol. 2 (2012)Google Scholar
  34. 34.
    Zhang, J., Dong, Y.: Simulation and performance analysis of distributed attack against MAC layer of underwater acoustic network based on OPNET. In: 2017 IEEE International Conference on Information and Automation, ICIA 2017, pp. 1072–1076 (2017).  https://doi.org/10.1109/ICInfA.2017.8079061

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Fabián Cuzme-Rodríguez
    • 1
    Email author
  • Ana Umaquinga-Criollo
    • 1
  • Luis Suárez-Zambrano
    • 1
  • Henry Farinango-Endara
    • 1
  • Hernán Domínguez-Limaico
    • 1
  • Mario Mediavilla-Valverde
    • 1
  1. 1.Carrera de Ingeniería en TelecomunicacionesUniversidad Técnica del NorteIbarraEcuador

Personalised recommendations