Advertisement

Resilience of Interconnected Infrastructures and Systems: The RESIIST Project

  • Daouda KamissokoEmail author
  • Blazho Nastov
  • Vincent Chapurlat
  • Hélène Dolidon
  • Aurelia Bony-Dandrieux
  • Bruno Barroca
  • Mickael Marechal
  • Jerome Tixier
  • Matthieu Allon
  • Frederick Benaben
  • Nicolas Daclin
  • Alexis Muller
  • Nicolas Salatge
  • Valerie November
Conference paper
  • 37 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 1193)

Abstract

This paper introduces a methodology for resilience assessment of critical infrastructures based on massive data. The methodology is developed for the needs of the RESIIST research project. We start from the observation that the security of large cities has become a major issue. To ensure the proper functioning of critical infrastructures, it is essential to make the right decisions at the right time. To do this, managers are informed in their decision-making processes by several indicators such as resilience. As insecurity becomes more and more threatening with technological, natural and terrorist risks, it is essential to have an indicator of resilience of the infrastructures guaranteeing security. We therefore propose an innovative method of assessing resilience. It is innovative in that it combines both the genericity (it applies to all types of infrastructure), it takes into account several dimensions (economic, technical, social, human, regulatory etc.), it integrates massive data (from cameras, sensors, GIS, and social networks), it allows decision-making in an immersive environment in virtual reality.

Keywords

Resilience Critical infrastructure Decision making Big data Simulation Virtual reality Security System 

Notes

Acknowledgments

This paper shows a result of the RESIIST project (Résilience des infrastructures et systèmes interconnectés - Resilience of Interconnected Infrastructures and Systems https://research-gi.mines-albi.fr/display/resiist/RESIIST+Home [in French]). The RESIIST project is funded jointly by the French National Research Agency (ANR) and the General Secretary of Defense and National Security (SGDSN). The authors acknowledge these organizations for their support, and particularly, the industrial partners for the definition of the application cases.

References

  1. 1.
    Ruault, J.-R.: Proposition d’architecture et de processus pour la résilience des systèmes: application aux systèmes critiques à longue durée de vie. Ph.D. thesis, Université de Valenciennes et du Hainaut-Cambresis (2015)Google Scholar
  2. 2.
    Hosseini, S., Barker, K., Ramirez-Marquez, J.E.: A review of definitions and measures of system resilience. Reliab. Eng. Syst. Saf. 145, 47–61 (2016)CrossRefGoogle Scholar
  3. 3.
    Johanson, J.: Risk and vulnérability analysis of interdependent technical infrastructures. Lund University, Department of Measurement Technology and Industrial Electrical Engineering (2010)Google Scholar
  4. 4.
    Giannopoulos, G., Filippini, R., Schimmer, M.: Risk assessment methodologies for critical infrastructure protection. Part I: a state of the art. JRC Technical Notes (2012)Google Scholar
  5. 5.
    Kamissoko, D., et al.: Continuous and multidimensional assessment of resilience based on functionality analysis for interconnected systems. Struct. Infrastruct. Eng. 15, 427–442 (2018)CrossRefGoogle Scholar
  6. 6.
    Barker, K., et al.: Defining resilience analytics for interdependent cyber-physical-social networks. Struct. Infrastruct. Eng. 2(2), 59–67 (2017)Google Scholar
  7. 7.
    Taysom, E., Crilly, N.: Resilience in sociotechnical systems: the perspectives of multiple stakeholders. She Ji: J. Des. Econ. Innov. 3(3), 165–182 (2017)Google Scholar
  8. 8.
    Winfield, L.F.: The knowledge base on resilience in African-American adolescents. In: Pathways Through Adolescence: Individual Development in Relation to Social Contexts, pp. 87–118 (1995)Google Scholar
  9. 9.
    Stachowiak, H.: Allgemeine modelltheorie (1973)CrossRefGoogle Scholar
  10. 10.
    Jamshidi, M.: System of systems engineering - new challenges for the 21st century. IEEE Aerosp. Electron. Syst. Mag. 23(5), 4–19 (2008)CrossRefGoogle Scholar
  11. 11.
    Féliot, C.: Toward a formal theory of systems, Colloque d’Automne du LIX 2007 - CAL07 Complex Systems: Modelling, Verification and Optimization, Paris, Carré des Sciences, 3rd and 4th October 2007 (2007)Google Scholar
  12. 12.
    Penalva, J.M.: La modelisation par les systemes en situation complexes, Paris (1997)Google Scholar
  13. 13.
    Pederson, P., Dudenhoeffer, D., Hartley, S., Permann, M.: Critical infrastructure interdependency modeling: a survey of US and international research. Idaho National Laboratory, vol. 25, p. 27 (2006)Google Scholar
  14. 14.
    INCOSE: Survey of Model-Based Systems Engineering (MBSE) Methodologies, INCOSE TD-2007-003-01, Version/Revision: B, 10 June 2008Google Scholar
  15. 15.
    Lemazurier, L., Chapurlat, V., Grossetête, A.: An MBSE approach to pass from requirements to functional architecture. IFAC-PapersOnLine 50(1), 7260–7265 (2017)CrossRefGoogle Scholar
  16. 16.
    Micouin, P.: Model Based Systems Engineering: Fundamentals and Methods. Wiley, Hoboken (2014)CrossRefGoogle Scholar
  17. 17.
    Nastov, B.: Contribution à une méthode outillée pour la conception de langages de modélisation métier interopérables, analysables et prouvables pour l’Ingénierie Système basée sur des Modèles (2016)Google Scholar
  18. 18.
    Crawley, E.: Introduction to System Architecture (2007)CrossRefGoogle Scholar
  19. 19.
    Luglio, C.E.: Resilience of critical infrastructures: dynamic modeling of disruptive events in a European scenario (2017)Google Scholar
  20. 20.
    Ouyang, M.: Review on modeling and simulation of interdependent critical infrastructure systems. Reliab. Eng. Syst. Saf. 121, 43–60 (2014)CrossRefGoogle Scholar
  21. 21.
    FMI: Functional Mock-up Interface (2017). http://fmi-standard.org/. Accessed 26 Mar 2018
  22. 22.
    HLA: IEEE 1516-2010 – IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) – Framework and Rules. IEEE Standard Association (2010)Google Scholar
  23. 23.
    Desmond, M.: Decision criteria for the identification of alternatives in strategic environmental assessment. Impact Assess. Proj. Apprais. 25(4), 259–269 (2007)CrossRefGoogle Scholar
  24. 24.
    Bacon, C.J.: The use of decision criteria in selecting information systems/technology investments. MIS Q. 16(3), 335–353 (1992)CrossRefGoogle Scholar
  25. 25.
    Simon, H.A.: Theories of decision-making in economics and behavioral science. Am. Econ. Rev. 49, 253–283 (2000)Google Scholar
  26. 26.
    Roy, B.: Méthodologie multicritère d’aide à la décision. Economica (1985)Google Scholar
  27. 27.
    Velasquez, M., Hester, P.: An analysis of multi-criteria decision making methods. Int. J. Oper. Res. 10, 56–66 (2013)MathSciNetGoogle Scholar
  28. 28.
    Triantaphyllou, E.: Multi-criteria decision making methods. In: Triantaphyllou, E. (ed.) Multi-criteria Decision Making Methods: A Comparative Study. APOP, vol. 44, pp. 5–21. Springer, Boston (2000).  https://doi.org/10.1007/978-1-4757-3157-6_2CrossRefzbMATHGoogle Scholar
  29. 29.
    Zhu, B., Chen, H.: Information visualization for decision support. In: Zhu, B., Chen, H. (eds.) Handbook on Decision Support Systems. INFOSYS, pp. 699–722. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-48716-6_32CrossRefGoogle Scholar
  30. 30.
    Chen, C.: Top 10 unsolved information visualization problems. IEEE Comput. Graphics Appl. 25(4), 12–16 (2005)CrossRefGoogle Scholar
  31. 31.
    2016 at 9:35 pm Posted by Larry Alton on May 8 and V. Blog: 4 Potential Problems With Data Visualization (2016)Google Scholar
  32. 32.
    Matheus, R., Janssen, M., Maheshwari, D.: Data science empowering the public: data-driven dashboards for transparent and accountable decision-making in smart cities. Government Information Quarterly, February 2018Google Scholar
  33. 33.
    Steuer, J.: Defining virtual reality: dimensions determining telepresence. J. Commun. 42(4), 73–93 (1992)CrossRefGoogle Scholar
  34. 34.
    Valdés, J.J.: Virtual reality representation of information systems and decision rules: an exploratory technique for understanding data and knowledge structure. In: Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, pp. 615–618 (2003)Google Scholar
  35. 35.
    Morel, M., Bideau, B., Lardy, J., Kulpa, R.: Advantages and limitations of virtual reality for balance assessment and rehabilitation. Neurophysiol. Clin./Clin. Neurophysiol. 45(4), 315–326 (2015)CrossRefGoogle Scholar
  36. 36.
    Azuma, R.T.: A survey of augmented reality. Presence: Teleoperators Virtual Environ. 6(4), 355–385 (1997)CrossRefGoogle Scholar
  37. 37.
    Kamissoko, D.: Decision support for infrastructure network vulnerability assessment in natural disaster crisis situations. Doctorate, University of Toulouse, University of Toulouse 1 Capitole (2013)Google Scholar
  38. 38.
    Etzion, O., Niblett, P.: Event Processing in Action, 1st edn. Manning Publications Co., Greenwich (2010)Google Scholar
  39. 39.
    Luckham, D., Schulte, R.: Event Processing Glossary – Version 1.1, July 2008Google Scholar
  40. 40.
    Yodo, N., Wang, P.: Engineering resilience quantification and system design implications: a literature survey. J. Mech. Des. 138(11), 111408–111408-13 (2016)Google Scholar
  41. 41.
    McDaniels, T., Chang, S., Cole, D., Mikawoz, J., Longstaff, H.: Fostering resilience to extreme events within infrastructure systems: characterizing decision contexts for mitigation and adaptation. Glob. Environ. Chang. 18(2), 310–318 (2008)CrossRefGoogle Scholar
  42. 42.
    Renschler, C., Fraizer, A.E., Arendt, L.A., Cimellaro, G.P., Reinhorn, A.M., Bruneau, M.: Framework for defining and measuring resilience at the community scale: the PEOPLES resilience framework, October 2010Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Daouda Kamissoko
    • 1
    Email author
  • Blazho Nastov
    • 2
  • Vincent Chapurlat
    • 3
  • Hélène Dolidon
    • 4
  • Aurelia Bony-Dandrieux
    • 3
  • Bruno Barroca
    • 5
  • Mickael Marechal
    • 6
  • Jerome Tixier
    • 3
  • Matthieu Allon
    • 2
  • Frederick Benaben
    • 1
  • Nicolas Daclin
    • 3
  • Alexis Muller
    • 2
  • Nicolas Salatge
    • 1
  • Valerie November
    • 5
  1. 1.IMT Albi MinesUniversity of ToulouseToulouseFrance
  2. 2.AxellienceLilleFrance
  3. 3.IMT Mines AlèsAlèsFrance
  4. 4.CEREMANantesFrance
  5. 5.Université Paris-EstMarne-la-ValleeFrance
  6. 6.SNCFToulouseFrance

Personalised recommendations