Advertisement

Biopotential Signals Acquisition from the Brain Through the MindWave Device: Preliminary Results

  • Iván Galíndez-Floréz
  • Andrés Coral-Flores
  • Edna Moncayo-Torres
  • Dagoberto Mayorca-Torres
  • Herman Guerrero-ChapalEmail author
Conference paper
  • 40 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 1193)

Abstract

Brain Computer Interface (BCI) systems are the tools that allow the acquisition of biopotential signal spectra, with the most used attention, meditation and eye blinking signals. The main objective of BCI is to translate brain activity in digital form that can be used in different areas such as education, industrial, games, robotics, home automation and medical areas. In particular, this paper focuses on the acquisition and filtering of attention and meditation signals. For this, the variation and behavior of these signals are analyzed against external stimuli and in situations of stress and/or relaxation. EEG signals from the brain were captured by the MindWave Mobile device through the NeuroSky interface at a sampling rate of 1 Hz. The signals obtained are transmitted to two different devices, Arduino (At mega 328) and Raspberry Pi 3 through the Bluetooth module (HC-06) in order to compare the effectiveness of the sending and receiving times. The preliminary results in controlled scenarios allowed us identifying activities where complex mathematical calculations, meditation activities and listening to relaxing music are required. In this same sense, the comparison between the Arduino and Raspberry devices is shown.

Keywords

MindWave Bluetooth Biopotential signals Acquisition Attention Meditation Disability Microprocessor 

References

  1. 1.
    Calderón, D.: Procesamiento de ondas cerebrales con microprocesador ARM para control de coche teledirigido (2016)Google Scholar
  2. 2.
    Vaca, E.: Prototipo de prótesis de un brazo con 12 DGL controlada mediante ondas cere-brales (2017)Google Scholar
  3. 3.
    Kolb, B., Whishaw, I.: Neuropsicología Humana, 5th edn. Panamericana (2017)Google Scholar
  4. 4.
    Ayala, J., Bautista, D., Espíndola A.: Implementación de señales electro encefálicas a un prototipo de habitación domótica para pacientes cuadripléjicos. Instituto Politécnico (2015)Google Scholar
  5. 5.
    Guevara, M.: Sistema electrónico de iluminación (on-off) mediante el control de señales cerebrales basado en tecnología eeg. Universidad técnica del Norte, Ibarra (2015)Google Scholar
  6. 6.
    Hernández, A.: Desarrollo e implementación de una interfaz de comunicación que permita la interacción entre un usuario y las señales emitidas por sus ondas cerebrales usando un dispositivo de eeg de NeuroSKy para controlar periféricos electrónicos (2014)Google Scholar
  7. 7.
    García, l.: Control del robot IRB120 mediante el casco de electroencefalografía Neurosky MindWave (2017)Google Scholar
  8. 8.
    Arduino. https://www.arduino.cc. Accessed 13 Oct 2019
  9. 9.
    Raspberrypi. https://www.raspberrypi.org. Accessed 13 Oct 2019

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Iván Galíndez-Floréz
    • 1
  • Andrés Coral-Flores
    • 1
  • Edna Moncayo-Torres
    • 1
  • Dagoberto Mayorca-Torres
    • 1
  • Herman Guerrero-Chapal
    • 1
    Email author
  1. 1.Facultad de IngenieríaUniversidad MarianaPasto-NariñoColombia

Personalised recommendations