Advertisement

Distributed Ledger for Provenance Tracking of Artificial Intelligence Assets

  • Philipp Lüthi
  • Thibault Gagnaux
  • Marcel GygliEmail author
Chapter
  • 52 Downloads
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 576)

Abstract

High availability of data is responsible for the current trends in Artificial Intelligence (AI) and Machine Learning (ML). However, high-grade datasets are reluctantly shared between actors because of lacking trust and fear of losing control. Provenance tracing systems are a possible measure to build trust by improving transparency. Especially the tracing of AI assets along complete AI value chains bears various challenges such as trust, privacy, confidentiality, traceability, and fair remuneration. In this paper we design a graph-based provenance model for AI assets and their relations within an AI value chain. Moreover, we propose a protocol to exchange AI assets securely to selected parties. The provenance model and exchange protocol are then combined and implemented as a smart contract on a permission-less blockchain. We show how the smart contract enables the tracing of AI assets in an existing industry use case while solving all challenges. Consequently, our smart contract helps to increase traceability and transparency, encourages trust between actors and thus fosters collaboration between them.

Keywords

Artificial intelligence Blockchain Transparency Provenance 

Notes

Acknowledgements

The project leading to this application has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 732204 (Bonseyes). This work is supported by the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract numbers 16.0159. The opinions expressed and arguments employed herein do not necessarily reflect the official views of these funding bodies.

References

  1. 1.
    Bondy, J.A., Murty, U.S.R., et al.: Graph Theory with Applications, vol. 290. Macmillan, London (1976)CrossRefGoogle Scholar
  2. 2.
    Buneman, P., Khanna, S., Wang-Chiew, T.: Why and where: a characterization of data provenance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 316–330. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44503-X_20CrossRefGoogle Scholar
  3. 3.
    Buterin, V., et al.: A next-generation smart contract and decentralized application platform. White Paper 3, 37 (2014)Google Scholar
  4. 4.
    Clack, C.D., Bakshi, V.A., Braine, L.: Smart contract templates: foundations, design landscape and research directions. arXiv:1608.00771 [cs], August 2016
  5. 5.
    Crosby, M., Pattanayak, P., Verma, S., Kalyanaraman, V., et al.: Blockchain technology: beyond bitcoin. Appl. Innov. 2(6–10), 71 (2016)Google Scholar
  6. 6.
    Dean, J., Ghemawat, S.: MapReduce: simplified data processing on largeclusters. Commun. ACM 51, 107–113 (2008)CrossRefGoogle Scholar
  7. 7.
    Economist, T.: The World’s Most Valuable Resource is No Longer Oil, but Data. The Economist, New York (2017)Google Scholar
  8. 8.
    Google LLC: Zeitgeist (2012)Google Scholar
  9. 9.
    Konečný, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: strategies for improving communication efficiency. arXiv:1610.05492 [cs], October 2016
  10. 10.
    Labrinidis, A., Jagadish, H.V.: Challenges and opportunities with big data. Proc. VLDB Endow. 5, 2032–2033 (2012)CrossRefGoogle Scholar
  11. 11.
    Liang, X., Shetty, S., Tosh, D., Kamhoua, C., Kwiat, K., Njilla, L.: Provchain: a blockchain-based data provenance architecture in cloud environment with enhanced privacy and availability. In: Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (2017)Google Scholar
  12. 12.
    Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)CrossRefGoogle Scholar
  13. 13.
    Llewellyn, T., et al.: BONSEYES: platform for open development of systems of artificial intelligence. In: ACM International Conference on Computing Frontiers 2017. ACM Digital Library (2017)Google Scholar
  14. 14.
    Ma, S., et al.: LAMP: data provenance for graph based machine learning algorithms through derivative computation. In: Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering (2017)Google Scholar
  15. 15.
    Maull, R., Godsiff, P., Mulligan, C., Brown, A., Kewell, B.: Distributed ledger technology: applications and implications. Strateg. Change 26(5), 481–489 (2017).  https://doi.org/10.1002/jsc.2148CrossRefGoogle Scholar
  16. 16.
    Park, H., Ikeda, R., Widom, J.: Ramp: a system for capturing and tracing provenance in mapreduce workflows (2011)Google Scholar
  17. 17.
    Ramachandran, A., Kantarcioglu, M.: Smartprovenance: a distributed, blockchain based dataprovenance system. In: Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy (2018)Google Scholar
  18. 18.
    Sarpatwar, K., et al.: Towards enabling trusted artificial intelligence via blockchain. In: Calo, S., Bertino, E., Verma, D. (eds.) Policy-Based Autonomic Data Governance. LNCS, vol. 11550, pp. 137–153. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-17277-0_8CrossRefGoogle Scholar
  19. 19.
    Schelter, S., Boese, J.H., Kirschnick, J., Klein, T., Seufert, S.: Automatically tracking metadata and provenance of machine learning experiments. In: Machine Learning Systems Workshop at NIPS (2017)Google Scholar
  20. 20.
    Stauder, R., et al.: Surgical data processing for smart intraoperative assistance systems. Innov. Surg. Sci. 2(3), 145–152 (2017).  https://doi.org/10.1515/iss-2017-0035CrossRefGoogle Scholar
  21. 21.
    Davenport, T.H., Bean, R.: Big data and AI executive survey (2019). Technical report, NewVantage Partners (NVP) (2019)Google Scholar
  22. 22.
    Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper 151, 1–32 (2014)Google Scholar
  23. 23.
    Woodruff, A., Stonebraker, M.: Supporting fine-grained data lineage in a database visualization environment. In: Proceedings 13th International Conference on Data Engineering (1997)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2020

Authors and Affiliations

  • Philipp Lüthi
    • 1
  • Thibault Gagnaux
    • 1
  • Marcel Gygli
    • 1
    Email author
  1. 1.Fachhochschule Nordwestschweiz FHNW, Institut für Interaktive Technologien (IIT)WindischSwitzerland

Personalised recommendations