Controller Design for a Robot Manipulator System Using Adaptive Backstepping Method

  • Samiran MaitiEmail author
  • Achintya Das
Conference paper
Part of the Learning and Analytics in Intelligent Systems book series (LAIS, volume 12)


This paper represents adaptive control strategies for controlling robot manipulator within sight of unsettling influences. The Scientific model of robot manipulator system has been exhibited in state space structure. Contingent upon the variation of parameters like lump inertia, friction coefficients, rotor inertia, a backstepping technique has been utilized to devise an adaptive control for the nonlinear system. Lyapunov Stability hypothesis has been incorporated into the dynamic framework to guarantee the solidness of the general framework regardless of parameter vulnerability. The improvement in the transient performance using the adaptive backstepping controller is validated by simulation environment.


Adaptive control Robot manipulator State space structure Backstepping Nonlinear system Lyapunov Stability 


  1. 1.
    Spong, W.M.: On the robust control of robot manipulators. IEEE Trans. Autom. Control 37(11), 1782–1786 (1992)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Eppinger, S., Seering, W.: Introduction to dynamic models for robot force control. IEEE Control Syst. Mag. 7(2), 48–52 (1987)CrossRefGoogle Scholar
  3. 3.
    Spong, M., Marino, R., Peresada, M., Taylor, G.D.: Feedback linearizing control of switched reluctance motors. IEEE Trans. Autom. Control 32(5), 371–379 (1987)CrossRefGoogle Scholar
  4. 4.
    Sadegh, N., Horowitz, R.: Stability and robustness analysis of a class of adaptive controllers for robotic manipulators. Int. J. Robot. Res. 9(3), 74–92 (1990)CrossRefGoogle Scholar
  5. 5.
    Abdallah, C., Dawson, M.D., Dorato, P., Jamishidi, M.: Survey of the robust control of robots. IEEE Control Syst. Mag. 11(2), 24–30 (1991)CrossRefGoogle Scholar
  6. 6.
    Dawson, M.D., Qu, Z., Bridges, M.M., Carroll, J.J.: Robust tracking of rigid-link flexible- joint electrically-driven robots. In: IEEE Conference on Decision and Control, vol. 2, pp. 1409–1412 (1991Google Scholar
  7. 7.
    Lozano, R., Brogliato, B.: Adaptive control of robot manipulators with flexible joints. IEEE Trans. Autom. Control 37(2), 174–181 (1992)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hu, J., Dawson, M.D., Qian, Y.: Position tracking control for robot manipulators driven by induction motors without flux measurements. IEEE Trans. Robot. Autom. 12(3), 419–438 (1996)CrossRefGoogle Scholar
  9. 9.
    Cheah, Ch.Ch., Hirano, M., Kawamura, S., Arimoto, S.: Approximate Jacobian control for robots with uncertain kinematics and dynamics. IEEE Trans. Robot. Autom. 19(4), 692–702 (2003)CrossRefGoogle Scholar
  10. 10.
    Huang, Y.P.: Study of optimal path planning and motion control of a delta robot manipulator. IEEE Trans. Industr. Electron. 49(1), 224–232 (2015)Google Scholar
  11. 11.
    Galicki, M.: Finite-time trajectory tracking control in a task space of robotic manipulator. Int. J. Autom. 67, 165–170 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Narendra, K.S., Annaswamy, A.: Stable Adaptive Systems, pp. 705–752. Prentice Hall, Upper Saddle River (1989)zbMATHGoogle Scholar
  13. 13.
    Slotine, J., Li, W.: Applied Nonlinear Control, pp. 311–391. Prentice Hall, Upper Saddle River (1991)zbMATHGoogle Scholar
  14. 14.
    Krstic, M., Kanellakopoulos, I., Kokotovic, P.V.: Nonlinear and Adaptive Control Design, 1st edn, pp. 87–122. John Wiley, New York (1995)Google Scholar
  15. 15.
    Albahkali, T., Mukherjee, R., Das, T.: Swing-up control of the pendubot: an impulse momentum approach. IEEE Trans. Rob. 25(4), 975–982 (2009)CrossRefGoogle Scholar
  16. 16.
    Mnif, F.: Recursive backstepping stabilization of a wheeled mobile robot. Int. J. Adv. Rob. Syst. 1(4), 287–294 (2004)zbMATHGoogle Scholar
  17. 17.
    Chien, C., Huang, A.C.: Adaptive control of flexible-joint electrically driven robot with time-varying uncertainties. IEEE Trans. Ind. Electron. 54(2), 1032–1038 (2007)CrossRefGoogle Scholar
  18. 18.
    Chang, C.Y., Yen, M.H.: Robust tracking control for a class of electrically driven flexible-joint robots without velocity measurements. Int. J. Control 85(2), 194–212 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Wittenmark, B., Astrom, K.J.: Adaptive Control, 2nd edn, pp. 1–40. Dover Publications, Mineola (2008)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of ECEMaulana Abul Kalam Azad University of TechnologyHaringhataIndia
  2. 2.Department of ECEKalyani Government Engineering CollegeKalyani, NadiaIndia

Personalised recommendations