Advertisement

A Novel Model Predictive Control Based MPPT Tracking Algorithm for Solar Power

  • Jenson Joseph AttukadavilEmail author
  • Ravina Sawant
  • B. B. Pimple
Conference paper
  • 77 Downloads
Part of the Learning and Analytics in Intelligent Systems book series (LAIS, volume 12)

Abstract

Improving the maximum power drawn from the photovoltaic (PV) panel has a significant effect on the overall system performance and cost, due to the lower efficiency of PV cells. Due to the uncertainties in the insolation level of solar power, it is advantageous to run the PV module at the Maximum Power point. Various algorithms for extracting maximum power have been detailed in the past literature. In this paper, a novel and robust algorithm for the maximum power tracking using Model Predictive Control is proposed. The proposed predictive control speeds up the response as it predicts the future state of the system before applying the switching signal to the converter. The proposed algorithm shows major improvement over the traditional Perturbe and Observe algorithm.

Keywords

Model Predictive Control MPPT P&O Boost converter Solar power 

References

  1. 1.
    Massonand, G., Kaizuka, I.: Trends 2018 in Photovoltaic Applications, 23rd edn. Survey Report of Selected IEA Countries between 1992 and 2017, IEA International Energy Agency, T1-34:2018 (2018)Google Scholar
  2. 2.
    Esram, T., Chapman, P.L.: Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans. Energy Convers. 22, 439–449 (2007)CrossRefGoogle Scholar
  3. 3.
    Femia, N., Petrone, G., Spagnuolo, G., Vitelli, M.: Optimization of perturb and observe maximum power point tracking method. IEEE Trans. Power Electron. 20, 963–973 (2005)CrossRefGoogle Scholar
  4. 4.
    Bidram, A., Davoudi, A., Balog, R.S.: Control and circuit techniques to mitigate partial shading effects in photovoltaic arrays. IEEE J. Photovoltaics 2, 532–546 (2012)CrossRefGoogle Scholar
  5. 5.
    Kim, K.A., Li, R.M., Krein, P.T.: Voltage-offset resistive control for DC-DC converters in photovoltaic applications. In: IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 2045–2052 (2012)Google Scholar
  6. 6.
    Sera, D., Kerekes, T., Teodorescu, R., Blaabjerg, F.: Improved MPPT algorithms for rapidly changing environmental conditions. In: IEEE Power Electronics and Motion Control Conference (EPE-PEMC), pp. 1614–1619 (2006)Google Scholar
  7. 7.
    Holtz, J., Stadtfeld, S.: A predictive controller for the stator current vector of AC machines fed from a switched voltage source. In: International Power Electronics Conference (IPEC), pp. 1665–1675 (1983)Google Scholar
  8. 8.
    Rodriguez, J., Kazmierkowski, M.P., Espinoza, J.R., Zanchetta, P., Abu-Rub, H., Young, H.A., et al.: State of the art of finite control set model predictive control in power electronics. IEEE Trans. Industr. Inf. 9, 1003–1016 (2013)CrossRefGoogle Scholar
  9. 9.
    Abu-Rub, H., Guzinski, J., Krzeminski, Z., Toliyat, H.A.: Predictivecurrent control of voltage-source inverters. IEEE Trans. Industr. Electron. 51, 585–593 (2004)CrossRefGoogle Scholar
  10. 10.
    Cortes, P., Wilson, A., Kouro, S., Rodriguez, J., Abu-Rub, H.: Modelpredictive control of multilevel cascaded H-Bridge inverters. IEEE Trans. Industr. Electron. 57, 2691–2699 (2010)CrossRefGoogle Scholar
  11. 11.
    Barros, J.D., Silva, J.F.A., Jesus, E.G.A.: Fast-predictive optimal control of NPC multilevel converters. IEEE Trans. Industr. Electron. 60, 619–627 (2013)CrossRefGoogle Scholar
  12. 12.
    Shadmand, M.B., Mosa, M., Balog, R.S., Rub, H.A.: An improved MPPT technique for high gain DC-DC converter using model predictive control for photovoltaic applications. In: 2014 IEEE Applied Power Electronics Conference and Exposition - APEC 2014, Fort Worth, TX, pp. 2993–2999 (2014)Google Scholar
  13. 13.
    Lohith, K.J., Nayak, G., Chakraborty, S.: Robust control of DC-DC boost converter using 2-DOF 2-periodic controller. In: International Conference on Circuits, Controls, and Communications (CCUBE), Bangalore, pp. 43–48 (2017)Google Scholar
  14. 14.
    Gatto, G., Marongiu, I., Perfetto, A., Serpi, A.: Modelling and predictive control of a Buck-Boost DC-DC converter. In: SPEEDAM 2010, Pisa, pp. 1430–1435 (2010)Google Scholar
  15. 15.
    Wu, X., Xiao, G., Lei, B.: Simplified discrete-time modeling for convenient stability prediction and digital control design. IEEE Trans. Power Electron. 28(11), 5333–5342 (2013)CrossRefGoogle Scholar
  16. 16.
    Rivera, J., Chavira, F., Loukianov, A., Ortega, S., Raygoz, J.J.: Discrete-time modeling and control of a boost converter by means of a variational integrator and sliding modes. J. Franklin Inst. 351(1), 315–339 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jenson Joseph Attukadavil
    • 1
    Email author
  • Ravina Sawant
    • 2
  • B. B. Pimple
    • 1
  1. 1.Sardar Patel College of EngineeringMumbaiIndia
  2. 2.Fr. Conceicao Rodrigues Institute of TechnologyMumbaiIndia

Personalised recommendations