Advertisement

Unsteady Flow Behind an MHD Exponential Shock Wave in a Rotational Axisymmetric Non-ideal Gas with Conductive and Radiative Heat Fluxes

  • P. K. SahuEmail author
Conference paper
  • 74 Downloads
Part of the Learning and Analytics in Intelligent Systems book series (LAIS, volume 12)

Abstract

The propagation of cylindrical shock wave in rotational axisymmetric non-ideal gas with conductive and radiative heat fluxes as well as axial magnetic field is investigated. The magnetic field, azimuthal fluid velocity and axial fluid velocity are assumed to be varying according to exponential law with distance from the axis of symmetry in the undisturbed medium. The similarity method has been performed to obtain the class of self-similar solutions. Distributions of gas-dynamical quantities are discussed.

Keywords

Ionizing shock wave Non-ideal gas Rotating fluids Heat transfer effects 

Notes

Acknowledgments

Author is thankful to Prof. M. K. Verma, Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India for fruitful discussions. This work was supported by the research grant no. TAR/2018/000150 under Teachers Associateship for Research Excellence (TARE) scheme from the Science and Engineering Research Board (SERB), India. Author gracefully acknowledges financial support from SERB.

References

  1. 1.
    Lin, S.C.: J. Appl. Phys. 25(1), 54–57 (1954)CrossRefGoogle Scholar
  2. 2.
    Nath, G., Sahu, P.K.: SpringerPlus 5(1), 1509 (2016)CrossRefGoogle Scholar
  3. 3.
    Marshak, R.E.: Phys. Fluids 1(1), 24–29 (1958)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Elliott, L.A.: Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 258(1294), 287–301 (1960)Google Scholar
  5. 5.
    Wang, K.C.: J. Fluid Mech. 20(3), 447–455 (1964)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Helliwell, J.B.: J. Fluid Mech. 37(3), 497–512 (1969)CrossRefGoogle Scholar
  7. 7.
    NiCastro, J.R.A.J.: Phys. Fluids 13(8), 2000–2006 (1970)CrossRefGoogle Scholar
  8. 8.
    Ghoniem, A.F., Kamel, M.M., Berger, S.A., Oppenheim, A.K.: J. Fluid Mech. 117, 473–491 (1982)CrossRefGoogle Scholar
  9. 9.
    Hartmann, L.: Accretion Processes in Star Formation, vol. 32. Cambridge University Press, Cambridge (2000)Google Scholar
  10. 10.
    Balick, B., Frank, A.: Ann. Rev. Astron. Astrophys. 40(1), 439–486 (2002)CrossRefGoogle Scholar
  11. 11.
    Nath, G.: Ain Shams Eng. J. 3(4), 393–401 (2012)CrossRefGoogle Scholar
  12. 12.
    Nath, G., Sahu, P.K.: Int. J. Appl. Comput. Math. 3(4), 2785–2801 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Levin, V.A., Skopina, G.A.: J. Appl. Mech. Tech. Phys. 45(4), 457–460 (2004)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Nath, G., Sahu, P.K.: Ain Shams Eng. J. 9, 1151–1159 (2018)CrossRefGoogle Scholar
  15. 15.
    Sahu, P.K.: Phys. Fluids 29(8), 086102 (2017)CrossRefGoogle Scholar
  16. 16.
    Anisimov, S.I., Spiner, O.M.: J. Appl. Math. Mech. 36(5), 883–887 (1972)CrossRefGoogle Scholar
  17. 17.
    Rao, M.P.R., Purohit, N.K.: Int. J. Eng. Sci. 14(1), 91–97 (1976)CrossRefGoogle Scholar
  18. 18.
    Sahu, P.K.: Math. Methods Appl. Sci. 42, 4734–4746 (2019)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Wu, C.C., Roberts, P.H.: Phys. Rev. Lett. 70(22), 3424 (1993)CrossRefGoogle Scholar
  20. 20.
    Roberts, P.H., Wu, C.C.: Phys. Lett. A 213(1–2), 59–64 (1996)CrossRefGoogle Scholar
  21. 21.
    Sedov, L.I.: Similarity and Dimensional Methods in Mechanics. Academic Press, New York (1959)zbMATHGoogle Scholar
  22. 22.
    Rao, M.R., Ramana, B.V.: J. Math. Phys. Sci. 10, 465–476 (1976)Google Scholar
  23. 23.
    Vishwakarma, J.P., Nath, G.: Meccanica 42(4), 331–339 (2007)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Gretler, W., Wehle, P.: Shock Waves 3(2), 95–104 (1993)CrossRefGoogle Scholar
  25. 25.
    Nath, G., Sahu, P.K., Chaurasia, S.: Chin. J. Phys. 58, 280–293 (2019)CrossRefGoogle Scholar
  26. 26.
    Nath, G., Sahu, P.K., Chaurasia, S.: Model. Meas. Control B 87(4), 236–243 (2018)CrossRefGoogle Scholar
  27. 27.
    Pomraning, G.C.: The Equations of Radiation Hydrodynamics. International Series of Monographs in Natural Philosophy. Pergamon Press, Oxford (1973)Google Scholar
  28. 28.
    Laumbach, D.D., Probstein, R.F.: J. Fluid Mech. 40(4), 833–858 (1970)CrossRefGoogle Scholar
  29. 29.
    Zel’Dovich, Y.B., Raizer, Y.P.: Physics of shock waves and high-temperature hydrodynamic phenomena. Courier Corporation (2012)Google Scholar
  30. 30.
    Rosenau, P., Frankenthal, S.: Phys. Fluids 19(12), 1889–1899 (1976)CrossRefGoogle Scholar
  31. 31.
    Sahu, P.K.: Commun. Theor. Phys. 70(2), 197–208 (2018)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Korolev, A.S., Pushkar, E.A.: Fluid Dyn. 49(2), 270–287 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of MathematicsGovernment Shyama Prasad Mukharjee CollegeSitapurIndia

Personalised recommendations