Solving Knapsack Problem with Fuzzy Random Variable Coefficients

  • Vishnu Pratap SinghEmail author
  • Debjani Chakraborty
Conference paper
Part of the Learning and Analytics in Intelligent Systems book series (LAIS, volume 12)


This paper represents the knapsack problem in fuzzy and random environment. In this work, we introduce the profit and weights of the knapsack problem as the fuzzy random variable. In real-world decision-making situations, the simultaneous existence of randomness and fuzziness of the weights and the profit is a common requirement. To overcome this difficulty, these weights and profit can be considered as the fuzzy random variable. Thus a fuzzy stochastic knapsack problem is introduced. A method of finding a solution of the fuzzy stochastic knapsack problem is obtained using two-stage decision-making approach. At first stage, the problem is converted into equivalent fuzzy knapsack problem. On the second stage, using the graded mean integration representation of the fuzzy number, the equivalent deterministic knapsack problem has been obtained. An investment problem in fuzzy and random environment has been defined as a fuzzy stochastic knapsack problem and the solution procedure is given to signify the proposed approach.


Knapsack problem Fuzzy random variable Dynamic programming Optimal profit Investment problem 


  1. 1.
    Beier, R., Vöcking, B.: Random knapsack in expected polynomial time. In: Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, pp. 232–241. ACM (2003)Google Scholar
  2. 2.
    Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications, vol. 144. Academic press, Orlando (1980)zbMATHGoogle Scholar
  3. 3.
    Fréville, A.: The multidimensional 0–1 knapsack problem: an overview. Eur. J. Oper. Res. 155(1), 1–21 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Gaivoronski, A.A., Lisser, A., Lopez, R., Xu, H.: Knapsack problem with probability constraints. J. Glob. Optim. 49(3), 397–413 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gavish, B., Pirkul, H.: Efficient algorithms for solving multiconstraint zero-one knapsack problems to optimality. Math. Program. 31(1), 78–105 (1985)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gil, M.A., López-Díaz, M., Ralescu, D.A.: Overview on the development of fuzzy random variables. Fuzzy Sets Syst. 157(19), 2546–2557 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hsieh, C.H., Chen, S.H.: Similarity of generalized fuzzy numbers with graded mean integration representation. In: Proceedings of the 8th International Fuzzy Systems Association World Congress, vol. 2, pp. 551–555 (1999)Google Scholar
  8. 8.
    Kasperski, A., Kulej, M.: The 0-1 knapsack problem with fuzzy data. Fuzzy Optim. Decis. Making 6(2), 163–172 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Katagiri, H., Ishii, H., Sakawa, M.: On fuzzy random linear knapsack problems. Central Eur. J. Oper. Res. 12(1), 59–70 (2004)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Kwakernaak, H.: Fuzzy random variables-I. Definitions and theorems. Inf. Sci. 15(1), 1–29 (1978)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kwakernaak, H.: Fuzzy random variables-II. Inf. Sci. 17(3), 253–278 (1979)CrossRefGoogle Scholar
  12. 12.
    Lin, F.T., Yao, J.S.: Using fuzzy numbers in knapsack problems. Eur. J. Oper. Res. 135(1), 158–176 (2001)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Martello, S.: Knapsack Problems: Algorithms and Computer Implementations. Discrete Mathematics and Optimization. Wiley-Interscience, New York (1990)zbMATHGoogle Scholar
  14. 14.
    Okada, S., Gen, M.: Fuzzy multiple choice knapsack problem. Fuzzy Sets Syst. 67(1), 71–80 (1994)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Pisinger, D.: An expanding-core algorithm for the exact 0–1 knapsack problem. Eur. J. Oper. Res. 87(1), 175–187 (1995)CrossRefGoogle Scholar
  16. 16.
    Puri, M.L., Ralescu, D.A.: Fuzzy random variables. J. Math. Anal. Appl. 114(2), 409–422 (1986)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Salkin, H.M., De Kluyver, C.A.: The knapsack problem: a survey. Naval Res. Logist. (NRL) 22(1), 127–144 (1975)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Singh, V.P., Chakraborty, D.: Solving bi-level programming problem with fuzzy random variable coefficients. J. Intell. Fuzzy Syst. 32(1), 521–528 (2017)CrossRefGoogle Scholar
  19. 19.
    Singh, V., Chakraborty, D.: A dynamic programming algorithm for solving bi-objective fuzzy knapsack problem. In: Mathematics and Computing, pp. 289–306. Springer (2015)Google Scholar
  20. 20.
    Zimmermann, H.J.: Fuzzy set theory and its applications. Springer Science & Business Media (2001)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of MathematicsVisvesvaraya National Institute of Technology NagpurNagpurIndia
  2. 2.Department of MathematicsIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations