Advertisement

Logistic Flow Control System in Green Supply Chains

  • Nikita OsintsevEmail author
  • Aleksandr Rakhmangulov
  • Aleksander Sładkowski
  • Natalja Dyorina
Chapter
  • 17 Downloads
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 124)

Abstract

The effective concept implementation of sustainable development in logistics and supply chain management is based on the use of management decision-making methods for changing the parameters of logistics flows. Decisions should be made based on the measurement and evaluation of the parameters and indicators of these flows. The complexity of managing green supply chains is associated with insufficient knowledge of the system of logistics flows indicators and parameters, as well as in the absence of methods for their comprehensive assessment. In the present work, an original system of indicators (indicators and parameters) of logistic flows in green supply chains is proposed. Managed parameters of logistic flows are identified, the change of which ensures the principles implementation of the sustainable development concept. The use of the fuzzy AHP-TOPSIS method for evaluating the performance of logistics flows in green supply chains is considered. A fuzzy model for managing the parameters of logistics flows has been developed. Changing the parameters of logistic flows in order to achieve the goals of the sustainable development concept is proposed to be carried out using the original system of green logistics instruments. The work presents a calculation implementation example in the logistics flow control system of the procedure for selecting green logistic instruments.

Keywords

Sustainable development Green logistics Transport systems Green supply chain management Logistics flows Indicators Fuzzy approach AHP-TOPSIS Decision-making 

Bibliography

  1. 1.
    Динaмикa внeшнeй тopгoвли (2018). http://ac.gov.ru/files/publication/a/17665.pdf. (In Russian: Foreign trade dynamics)
  2. 2.
  3. 3.
    Moкpeцкий AЧ (2017) “Экoнoмичecкий пoяc Шeлкoвoгo пyти” кaк мexaнизм экoнoмичecкoй гeoпoлитики Китaя в пocтcoвeтcкиx cтpaнax. Китaй в миpoвoй и peгиoнaльнoй пoлитикe. Иcтopия и coвpeмeннocть 22:257–273. [In Russian: Mokretskii ACH (2017) The silk road economic belt as a mechanism of China’s economic geopolitics in post-soviet countries. China in world and regional politics (History and modernity)]Google Scholar
  4. 4.
    International Trade Centre (2019). http://www.trademap.org
  5. 5.
    Rakhmangulov A, Sładkowski A, Osintsev N, Kopylova O, Dyorina N (2018) Sustainable development of transport systems for cargo flows on the East-West direction. In: Sładkowski A (ed) Transport systems and delivery of cargo on East–West routes. Studies in systems, decision and control 155. Springer, Cham, pp 3–69Google Scholar
  6. 6.
    The Roads to Decoupling: 21 Countries are reducing carbon emissions while growing GDP (2016). http://www.wri.org/blog/2016/04/roads-decoupling-21-countries-are-reducing-carbon-emissions-while-growing-gdp
  7. 7.
    United Nations Framework convention on climate change: adoption of the Paris agreement (2015). https://unfccc.int/sites/default/files/resource/docs/2015/cop21/eng/l09r01.pdf
  8. 8.
    Экoлoгичecкий cлeд cyбъeктoв Poccийcкoй Фeдepaции (2017). https://wwf.ru/upload/iblock/61e/footprint2017_pages_web.pdf. (In Russian: The ecological footprint of the constituent entities of the Russian Federation)
  9. 9.
    Burck J, Marten F, Bals C et al (2017) The climate change performance index: results 2018. Germanwatch, BonnGoogle Scholar
  10. 10.
    The global economy. Economic indicators for over 200 countries (2019). http://ru.theglobaleconomy.com/indicators_list.php
  11. 11.
    The Sustainable Development (2019). https://sustainabledevelopment.un.org/
  12. 12.
    Transforming our world: the 2030 Agenda for Sustainable Development (2015). http://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=R
  13. 13.
    Osintsev N, Kazarmshchikova E (2017) Factors of sustainable development of transport and logistics systems. Mod Probl Russ Transp Complex. 7(1):13–21CrossRefGoogle Scholar
  14. 14.
    Makarova I, Shubenkova K, Gabsalikhova L (2017) Analysis of the city transport system’s development strategy design principles with account of risks and specific features of spatial development. Transp Probl 12(1):125–138CrossRefGoogle Scholar
  15. 15.
    Пoкaзaтeли энepгoэффeктивнocти: ocнoвы фopмиpoвaния пoлитики (2014). https://www.iea.org/media/training/eeukraine2015/RussianEPM.PDF (In Russian: energy efficiency indicators: policy framework)
  16. 16.
    Osintsev NA, Rakhmangulov AN, Baginova VV (2018) Innovations in the sphere of green logistics. World Transp Transp J 16(2):196–211Google Scholar
  17. 17.
    Emmett S, Sood V (2010) Green supply chains: an action manifesto. Hoboken, N.J. Wiley; Wiley, ChichesterGoogle Scholar
  18. 18.
    Дaнилoв-Дaнильян BИ, Пиcкyлoвa HA (2015) Уcтoйчивoe paзвитиe: Hoвыe вызoвы. Mocквa: Acпeкт-Пpecc (In Russian: Danilov-Danilian VI, Piskulova NA (2015) Sustainable development: new challenges. Aspekt-Press, )Google Scholar
  19. 19.
    Пaxoмoвa HB, Pиxтep К, Эндpec A (2003) Экoлoгичecкий мeнeджмeнт. Caнкт-Пeтepбypг: Питep (In Russian: Pakhomova NV, Rikhter K (2003) Environmental management. Piter, St. Petersburg)Google Scholar
  20. 20.
    Жypaвcкaя MA (2015) « Зeлёнaя » лoгиcтикa – cтpaтeгия ycпexa в paзвитии coвpeмeннoгo тpaнcпopтa. Becтник Уpaльcкoгo гocyдapcтвeннoгo yнивepcитeтa пyтeй cooбщeния 1:38–48 (In Russian: ZHuravskaia MA (2015) “Green logistics”—a strategy for success in the development of modern transport industry. Herald of the Ural State University of Railway Transport)Google Scholar
  21. 21.
    Гepaми BД, Кoлик AB (2015) Упpaвлeниe тpaнcпopтными cиcтeмaми. Tpaнcпopтнoe oбecпeчeниe лoгиcтики. Mocквa: Юpaйт (In Russian: Gerami VD, Kolik AV (2015) Management of transport systems. Logistics transport support. Urait, Moscow)Google Scholar
  22. 22.
    Кopнилoв CH, Paxмaнгyлoв AH, Шayльcкий БФ (2016) Ocнoвы лoгиcтики. Mocквa: ФГБOУ “Учeбнo-мeтoдичecкий цeнтp пo oбpaзoвaнию нa жeлeзнoдopoжнoм тpaнcпopтe” (In Russian: Kornilov SN, Rakhmangulov AN, Shaulskii BF (2016) Logistics basics. Moscow: FGBOU “Uchebno-metodicheskii tsentr po obrazovaniiu na zheleznodorozhnom transporte”)Google Scholar
  23. 23.
    Gudehus T, Kotzab H (2012) Comprehensive logistics. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  24. 24.
    Paxмaнгyлoв AH, Opexoвa HH, Ocинцeв HA (2016) Кoнцeпция cиcтeмы пoвышeния квaлификaции пpeпoдaвaтeлeй в oблacти экoлoгичecкoгo oбpaзoвaния нa ocнoвe лoгиcтичecкoй мoдeли ycтoйчивoгo paзвития. Coвpeмeнныe пpoблeмы тpaнcпopтнoгo кoмплeкca Poccии 6(1):4–18 (In Russian: Rakhmangulov AN, Orekhova NN, Osintsev NA (2016) The concept of a system for advanced training teachers in the field of the ecological education on the basis of logistics model of sustainable development. Mod Probl Russ Transp Complex)Google Scholar
  25. 25.
    Litman T (2015) Well measured: developing indicators for sustainable and livable transport planning. Victoria Transport Policy Institute, VictoriaGoogle Scholar
  26. 26.
    Osintsev NA, Rakhmangulov AN, Sladkowski AV et al (2019) Systematization of the green logistics’ principles. Part 2. Synthesis of the principles of logistics and sustainable development. Bull Transp Inf 2(284):7–16Google Scholar
  27. 27.
    Chornopyska NV (2014) Conceptual approach to define the notion «green logistics» . J Lviv Polytech Nat Univ “Logistics” 789:166–171Google Scholar
  28. 28.
    Rodrigue J-P, Slack B, Comtois C (2001) Green logistics (The paradoxes of). Handbook of logistics and supply-chain management. Pergamon, Amsterdam, London, pp 339–350Google Scholar
  29. 29.
    Kumar A (2015) Green logistics for sustainable development: an analytical review. IOSRD Int J Bus 1(1):7–136Google Scholar
  30. 30.
    Klumpp M (2016) To green or not to green: a political, economic and social analysis for the past failure of green logistics. Sustainability 8(5):441CrossRefGoogle Scholar
  31. 31.
    Rakhmangulov A, Sladkowski A, Osintsev N, Muravev D (2017) Green logistics: element of the sustainable development concept. Part 1. Naše more 64(3):120–126Google Scholar
  32. 32.
    Min H, Kim I (2012) Green supply chain research: past, present, and future. Logistics Res 4(1, 2):39–47Google Scholar
  33. 33.
    Osintsev NA, Rakhmangulov AN, Baginova VV (2018) Innovations in the sphere of green logistics. World Transp Transp J 16(3):220–234Google Scholar
  34. 34.
    Bevilacqua M, Ciarapica FE, Giacchetta G (2012) Design for environment as a tool for the development of a sustainable supply chain. Springer, London, New YorkCrossRefzbMATHGoogle Scholar
  35. 35.
    Pålsson H, Lundquist K-J, Olander L-O et al (2014) Target: low-carbon goods transportation: a growth-dynamics perspective on logistics and goods transportation until 2050. Report number: 2014–14. OECD Discussion Paper. Project: Governing transitions towards low-carbon energy and transport systems for 2050 (LETS2050)Google Scholar
  36. 36.
    Bretzke W-R, Barkawi K (2013) Sustainable logistics: responses to a global challenge. Springer, HeidelbergCrossRefGoogle Scholar
  37. 37.
    McKinnon AC (2015) Green logistics: improving the environmental sustainability of logistics. Kogan Page, London, PhiladelphiaGoogle Scholar
  38. 38.
    Кизим A, Кaбepтaй Д (2013) Coвpeмeнныe тpeнды « зeлёнoй » лoгиcтики в ycлoвияx глoбaлизaции. Лoгиcтикa 1:46–49 (In Russian: Kizim A, Kabertay D (2013) Modern trends of green logistics in the context of globalization. Logistics)Google Scholar
  39. 39.
    Golinska P, Romano CA (2012) Environmental issues in supply chain management: new trends and applications. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  40. 40.
    Rakhmangulov A, Sladkowski A, Osintsev N, Muravev D (2018) Green logistics: a system of methods and instruments. Part 2. Naše more 65(1):49–55Google Scholar
  41. 41.
    Osintsev NA, Rakhmangulov AN (2018) Green logistics in Russia and abroad: best practices review. Vestnik Rostovskogo Gosudarstvennogo Universiteta Putey Soobshcheniy 3:120–134Google Scholar
  42. 42.
    Abu Seman NA, Zakuan N, Jusoh A et al (2012) Green supply chain management: a review and research direction. Int J Managing Value Supply Chains 3(1):1–18CrossRefGoogle Scholar
  43. 43.
    Towards sustainable transportation: Conference highlights and overviews of issues (1996) Organisation for Economic Co-operation and Development, Vancouver, British ColumbiaGoogle Scholar
  44. 44.
    Guiding principles for Sustainable Transportation (1996). http://www.gdrc.org/uem/sustran/sustran-principles.html
  45. 45.
    Pawar KS, Rogers H, Potter A et al (2016) Developments in logistics and supply chain management: past, present and future. Palgrave Macmillan UK, LondonCrossRefGoogle Scholar
  46. 46.
    Osintsev NA, Rakhmangulov AN, Sladkowski AV et al (2019) Systematization of the green logistics’ principles. Part 1. The analysis of the existing logistics’ and sustainable development principles. Bull Transp Inf 1(283):10–16Google Scholar
  47. 47.
    Osintsev N, Rakhmangulov A, Sładkowski A, Jian GJ (2019) Cиcтeмa индикaтopoв pecypcнoгo бaлaнca в зeлёныx цeпяx пocтaвoк. In: XI international science conference and VIII international symposium of young researches “Transport problems 2019”. Conference proceedings. Silesian University of Technology, Faculty of Transport, Katowice, pp 472–479 (In Russian: The system of resource balance indicators in green supply chains)Google Scholar
  48. 48.
    Hepyш ЮM (2006) Лoгиcтикa. Mocквa: TК Beлби, Изд-вo Пpocпeкт (In Russian: Nerush IuM (2006) Logistics. TK Velbi, Izd-vo Prospekt, Moscow)Google Scholar
  49. 49.
    Пoттгoфф Г (1975) Учeниe o тpaнcпopтныx пoтoкax. Mocквa: Tpaнcпopт (In Russian: Pottgoff G (1975) The doctrine of traffic flows. Transport, Moscow)Google Scholar
  50. 50.
    Mиpoтин ЛБ, Cepгeeв BИ (1999) Ocнoвы лoгиcтики. Mocквa: ИHФPA-M (In Russian: Mirotin LB, Sergeev VI (1999) Logistics basics. INFRA-M, Moscow)Google Scholar
  51. 51.
    Ивyть PБ, Hapyшeвич CA (2004) Лoгиcтикa. Mинcк: БHTУ [In Russian: Ivut RB, Narushevich SA (2004) Logistics. BNTU, Minsk)Google Scholar
  52. 52.
    Rakhmangulov A, Sladkowski A, Osintsev N, Mishkurov P, Muravev D (2017) Dynamic optimization of railcar traffic volumes at railway nodes. In: Rail transport—systems approach. Studies in systems, decision and control 87. Springer, Cham, pp 405–456Google Scholar
  53. 53.
    Boл M, Mapтин Б (1981) Aнaлиз тpaнcпopтныx cиcтeм. Mocквa: Tpaнcпopт (In Russian: Vol M, Martin B (1981) Analysis of transport systems. Transport, Moscow)Google Scholar
  54. 54.
    Tяпyxин AП (2013) Лoгиcтикa. Mocквa: Юpaйт (In Russian: Tiapukhin AП (2013) Logistics. IUrait, Moscow)Google Scholar
  55. 55.
    Tяпyxин AП (2013) Кoдиpoвкa и гpaфичecкaя интepпpeтaция пapaмeтpoв лoгиcтичecкиx пoтoкoв. Boпpocы coвpeмeннoй экoнoмики 4:131–144 (In Russian: Tiapukhin AP (2013) Encoding and graphical interpretation of logistic flow parameters. J Contemp Econ Issues)Google Scholar
  56. 56.
    Кoзлoв ПA (2014) Пoтoк и бyнкep-кaнaл в тpaнcпopтнoй cиcтeмe. Mиp тpaнcпopтa 12(2):30–37 (In Russian: Kozlov PA (2014) Flow and hopper—channel in the transport system. World Transp Transp J)Google Scholar
  57. 57.
    Mиpoтин ЛБ, Гyдкoв BA, Зыpянoв BB (2010) Упpaвлeниe гpyзoвыми пoтoкaми в тpaнcпopтнo-лoгиcтичecкиx cиcтeмax. Mocквa: Гopячaя линия-Teлeкoм (In Russian: Mirotin LB, Gudkov VA, Zyrianov VV (2010) Cargo management in transport and logistics systems. Goriachaia liniia-Telekom, Moscow)Google Scholar
  58. 58.
    Гaляyтдинoв PP (2016) Mexaнизмы взaимoдeйcтвия пoтoкoв и зaпacoв нa пpeдпpиятии c тoчки зpeния лoгиcтики. Becтник ЮУpГУ. Cepия «Экoнoмикa и мeнeджмeнт» 10(1):157–163 (In Russian: Galiautdinov RR (2016) The mechanisms of interaction of flows and stocks in the enterprise in terms of logistics. Bull South Ural State Univ, Ser Econ Manag)Google Scholar
  59. 59.
    Филoнoв HГ (2012) Aнaлиз cтpyктypы coвoкyпныx издepжeк пpи фopмиpoвaнии пoтoкa иннoвaций в лoгиcтичecкиx (экoнoмичecкиx) cиcтeмax. Becтник Toмcкoгo гocyдapcтвeннoгo пeдaгoгичecкoгo yнивepcитeтa 12:133–140 (In Russian: Filonov NG (2012) Analysis of the structure of total costs in the formation of the flow of innovation in logistics (economic) systems. Tomsk State Pedagogical Univ Bull)Google Scholar
  60. 60.
    Филoнoв HГ, Кoвaлeнкo ЛB, Дaщинcкaя CК (2007) Aнaлиз пoтoкoв в лoгиcтичecкиx cиcтeмax. Becтник Toмcкoгo гocyдapcтвeннoгo yнивepcитeтa 300-2:77–79 (In Russian: Filonov NG, Kovalenko LV, Dashchinskaia SK (2007) Flow analysis in logistics systems. Tomsk State Univ J)Google Scholar
  61. 61.
    Mинaкoв BФ, Mинaкoвa TE (2014) Meтpикa пoтoкa в инфopмaциoннoй лoгиcтикe. Meждyнapoдный нayчнo-иccлeдoвaтeльcкий жypнaл. 4-1:63–64 [In Russian: Minakov VF, Minakova TE (2014) Flow metric in information logistics. Int Res J)Google Scholar
  62. 62.
    Mинaкoв BФ (2014) Пpoизвoдcтвeннaя фyнкция в лoгиcтичecкиx пoтoкax. Meждyнapoдный нayчнo-иccлeдoвaтeльcкий жypнaл. 11-3(30):55–58 (In Russian: Minakov VF (2014) Production function in logistics flows. Int Res J)Google Scholar
  63. 63.
    Shapiro RD, Heskett JL (1985) Logistics strategy: cases and concepts. West Pub. Co, St. Paul, MinnGoogle Scholar
  64. 64.
    Banasik A, Bloemhof-Ruwaard JM, Kanellopoulos A et al (2018) Multi-criteria decision making approaches for green supply chains: a review. Flex Serv Manuf J 30(3):366–396CrossRefGoogle Scholar
  65. 65.
    Govindan K, Khodaverdi R, Vafadarnikjoo A (2015) Intuitionistic fuzzy based DEMATEL method for developing green practices and performances in a green supply chain. Expert Syst Appl 42(20):7207–7220CrossRefGoogle Scholar
  66. 66.
    Uygun Ö, Dede A (2016) Performance evaluation of green supply chain management using integrated fuzzy multi-criteria decision making techniques. Comput Ind Eng 102:502–511CrossRefGoogle Scholar
  67. 67.
    Lin K-P, Tseng M-L, Pai P-F (2018) Sustainable supply chain management using approximate fuzzy DEMATEL method. Resour Conserv Recycl 128:134–142CrossRefGoogle Scholar
  68. 68.
    Islam MS, Tseng M-L, Karia N et al (2018) Assessing green supply chain practices in Bangladesh using fuzzy importance and performance approach. Resour Conserv Recycl 131:134–145CrossRefGoogle Scholar
  69. 69.
    Rostamzadeh R, Govindan K, Esmaeili A et al (2015) Application of fuzzy VIKOR for evaluation of green supply chain management practices. Ecol Ind 49:188–203CrossRefGoogle Scholar
  70. 70.
    Gul M, Celik E, Aydin N et al (2016) A state of the art literature review of VIKOR and its fuzzy extensions on applications. Appl Soft Comput 46:60–89CrossRefGoogle Scholar
  71. 71.
    Awasthi A, Chauhan SS, Goyal SK (2010) A fuzzy multicriteria approach for evaluating environmental performance of suppliers. Int J Prod Econ 126(2):370–378CrossRefGoogle Scholar
  72. 72.
    Mohammed A, Harris I, Soroka A et al (2019) A hybrid MCDM-fuzzy multi-objective programming approach for a G-resilient supply chain network design. Comput Ind Eng 127:297–312CrossRefGoogle Scholar
  73. 73.
    Banaeian N, Mobli H, Nielsen IE et al (2015) A methodology for green supplier selection in food industries. In: Technology management for sustainable production and logistics. Springer Berlin, Berlin, Heidelberg, pp 3–23Google Scholar
  74. 74.
    Khan SAR, Dong QL, Yu Z (2016) Research on the measuring performance of green supply chain management: in the perspective of China. Int J Eng Res Afr 27:167–178CrossRefGoogle Scholar
  75. 75.
    Çalık A, Pehlivan NY, Paksoy T et al (2018) Allied closed-loop supply chain network optimization with interactive fuzzy programming approach. In: Sustainable logistics and transportation: optimization models and algorithms. Springer, Cham, pp. 225–264Google Scholar
  76. 76.
    Mathiyazhagan K, Govindan K, NoorulHaq A et al (2013) An ISM approach for the barrier analysis in implementing green supply chain management. J Clean Prod 47:283–297CrossRefGoogle Scholar
  77. 77.
    Kannan G, Pokharel S, Sasi Kumar P (2009) A hybrid approach using ISM and fuzzy TOPSIS for the selection of reverse logistics provider. Resour Conserv Recycl 54(1):28–36CrossRefGoogle Scholar
  78. 78.
    Jayant A, Azhar M (2014) Analysis of the barriers for implementing green supply chain management (GSCM) practices: an interpretive structural modeling (ISM) approach. Procedia Eng 97:2157–2166CrossRefGoogle Scholar
  79. 79.
    Chavoshlou AS, Khamseh AA, Naderi B (2019) An optimization model of three-player payoff based on fuzzy game theory in green supply chain. Comput Ind Eng 128:782–794CrossRefGoogle Scholar
  80. 80.
    Yang D, Xiao T (2017) Pricing and green level decisions of a green supply chain with governmental interventions under fuzzy uncertainties. J Clean Prod 149:1174–1187CrossRefGoogle Scholar
  81. 81.
    Amid A, Ghodsypour SH, O’Brien C (2006) Fuzzy multiobjective linear model for supplier selection in a supply chain. Int J Prod Econ 104(2):394–407CrossRefGoogle Scholar
  82. 82.
    Chen C-T, Lin C-T, Huang S-F (2006) A fuzzy approach for supplier evaluation and selection in supply chain management. Int J Prod Econ 102(2):289–301CrossRefGoogle Scholar
  83. 83.
    Kumar M, Vrat P, Shankar R (2004) A fuzzy goal programming approach for vendor selection problem in a supply chain. Comput Ind Eng 46(1):69–85CrossRefGoogle Scholar
  84. 84.
    Özceylan E, Paksoy T (2013) Fuzzy multi-objective linear programming approach for optimising a closed-loop supply chain network. Int J Prod Res 51(8):2443–2461CrossRefGoogle Scholar
  85. 85.
    Selim H, Araz C, Ozkarahan I (2008) Collaborative production–distribution planning in supply chain: a fuzzy goal programming approach. Transp Res Part E: Logistics Transp Rev 44(3):396–419CrossRefGoogle Scholar
  86. 86.
    Liang T-F (2008) Integrating production-transportation planning decision with fuzzy multiple goals in supply chains. Int J Prod Res 46(6):1477–1494CrossRefzbMATHGoogle Scholar
  87. 87.
    Torabi SA, Hassini E (2008) An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy Sets Syst 159(2):193–214CrossRefMathSciNetzbMATHGoogle Scholar
  88. 88.
    Osintsev NA (2008) Safety management of production in the workplace using the apparatus of the theory of fuzzy sets. Vestnik of Nosov Magnitogorsk State Tech Uni 4:83–85Google Scholar
  89. 89.
    Velikanov V, Dyorina N, Usov I (2018) Coefficients determination of fuzzy products rules in a fuzzy model for excavators’ ergonomics estimation. MATEC Web of Conf 224(02013):1–6Google Scholar
  90. 90.
    Makarova I, Shubenkova K, Mavrin V et al (2018) Improving safety on the crosswalks with the use of fuzzy logic. Transp Probl 13(1):97–109CrossRefGoogle Scholar
  91. 91.
    Dubey R, Gunasekaran A, Papadopoulos T et al (2015) Green supply chain management enablers: mixed methods research. Sustain Prod Consumption 4:72–88CrossRefGoogle Scholar
  92. 92.
    Govindan K, Diabat A, Madan Shankar K (2015) Analyzing the drivers of green manufacturing with fuzzy approach. J Clean Prod 96:182–193CrossRefGoogle Scholar
  93. 93.
    Relich M (2015) Identifying relationships between eco-innovation and product success. In: Technology management for sustainable production and logistics. Springer, Berlin, pp 173–192Google Scholar
  94. 94.
    Jindal A, Sangwan KS (2017) Multi-objective fuzzy mathematical modelling of closed-loop supply chain considering economical and environmental factors. Ann Oper Res 257(1, 2), pp 95–120Google Scholar
  95. 95.
    Chen K-S, Wang C-H, Tan K-H (2019) Developing a fuzzy green supplier selection model using six sigma quality indices. Int J Prod Econ 212:1–7CrossRefGoogle Scholar
  96. 96.
    Dong H, Wang SN (2013) The entropy weight fuzzy comprehensive evaluation of green logistics cost management. Appl Mech Mater 397–400:2667–2671CrossRefGoogle Scholar
  97. 97.
    Noh J, Kim JS (2019) Cooperative green supply chain management with greenhouse gas emissions and fuzzy demand. J Clean Prod 208:1421–1435CrossRefGoogle Scholar
  98. 98.
    Pishvaee MS, Razmi J, Torabi SA (2012) Robust possibilistic programming for socially responsible supply chain network design: a new approach. Fuzzy Sets Syst 206:1–20CrossRefMathSciNetzbMATHGoogle Scholar
  99. 99.
    Pishvaee MS, Torabi SA, Razmi J (2012) Credibility-based fuzzy mathematical programming model for green logistics design under uncertainty. Comput Ind Eng 62(2):624–632CrossRefGoogle Scholar
  100. 100.
    Trade in goods and services has fluctuated significantly over the last 20 years (2015). https://www.wto.org/english/res_e/statis_e/its2015_e/its15_highlights_e.pdf
  101. 101.
    Logistics Market Outlook—2022 (2019). https://www.alliedmarketresearch.com/logistics-market
  102. 102.
    Raimbekov Z, Syzdykbayeva B, Rakhmetulina Z et al (2018) The effectiveness of logistics development and its impact on the economies of the countries along the silk road passing through Kazakhstan. Transp Prob 13(4):127–142CrossRefGoogle Scholar
  103. 103.
    Гopяeв HК, Циyлин CC (2014) Пepcпeктивы paзвития « зeлёныx тpaнcпopтныx кopидopoв » в Eвpoпe c yчётoм ключeвыx пoкaзaтeлeй эффeктивнocти. Becтник Cибиpcкoй гocyдapcтвeннoй aвтoмoбильнo-дopoжнoй aкaдeмии 40(6):14–20 (In Russian: Goriaev NK, TSiulin SS (2014) Development perspectives of the green corridors in European Union with the key performance indicators. Russ Automobile Highw Ind J)Google Scholar
  104. 104.
    Chen D, Bhatt Y (2019) The impacts of industrialization on freight movement in China. King Abdullah Petroleum Studies and Research Center, Riyadh, Saudi ArabiaCrossRefGoogle Scholar
  105. 105.
    Wright C, Nyberg D (2017) An inconvenient truth: how organizations translate climate change into business as usual. Acad Manag J 60(5):1633–1661CrossRefGoogle Scholar
  106. 106.
    Hasan MM, Nekmahmud M, Yajuan L et al (2019) Green business value chain: a systematic review. Sustain Product Consumption 20:326–339CrossRefGoogle Scholar
  107. 107.
    Business leaders endorse sustainable development goals as framework for shaping corporate strategies (2016). https://www.unglobalcompact.org/news/3571-06-23-2016
  108. 108.
    Ashkin S (2018) The 3 states of sustainability and how to get back on track. https://www.greenbiz.com/article/3-states-sustainability-and-how-get-back-track
  109. 109.
    Millar M (2015) Global supply chain ecosystems: strategies for competitive advantage in a complex world. Kogan Page, London, PhiladelphiaGoogle Scholar
  110. 110.
    Baйцзeккep ЭУ, Xapгpoyз К, Cмит M (2013) Фaктop 5. Фopмyлa ycтoйчивoгo pocтa. Дoклaд Pимcкoмy клyбy. Mocквa: ACT-ПPECC КHИГA (In Russian: Vaitszekker EU, KHargrouz K, Smit M (2013) Factor 5. Formula for sustainable growth. Report to the Club of Rome. AST-PRESS KNIGA, Moscow)Google Scholar
  111. 111.
    Thiell M, Zuluaga JPS, Montañez JPM et al (2011) Green logistics: global practices and their implementation in emerging markets. In: Green finance and sustainability: environmentally-aware business models and technologies. Business Science Reference, Hershey, Pa, LondonGoogle Scholar
  112. 112.
    Guiffrida AL, Dey A, LaGuardia P et al (2011) Building sustainability in logistics operations: a research agenda. Manag Res Rev 34(11):1237–1259CrossRefGoogle Scholar
  113. 113.
    Fortes J (2009) Green supply chain management: a literature review. Otago Manag Grad Rev 7:51–62Google Scholar
  114. 114.
    Abd Razak A, Rowling M, White G et al (2016) Public sector supply chain management: a triple helix approach to aligning innovative environmental initiatives. Foresight STI Gov 10(1):43–52CrossRefGoogle Scholar
  115. 115.
    Cetinkaya B (2010) Sustainable supply chain management: practical ideas for moving towards best practice. Springer, Berlin, LondonGoogle Scholar
  116. 116.
    Nowak S, Grabara J (2014) Green logistics and its solutions in polish companies. Appl Mech Mater 708:65–69CrossRefGoogle Scholar
  117. 117.
    Beškovnik B, Twrdy E (2012) Green logistics strategy for South East Europe: to improve intermodality and establish green transport corridors. Transport. 27(1):25–33CrossRefGoogle Scholar
  118. 118.
    Manjunath G (2014) Green logistics: a learn, evaluation and initiatives in business organizations. Int J Bus Quant Econ Appl Manag Res 1(7):36–45Google Scholar
  119. 119.
    Raman P (2014) Green supply chain management in India—an overview. J Supply Chain Manag Syst 3(1):14–23Google Scholar
  120. 120.
    Abbasi H (2016) Green supply chain management in India: an overview. Int J Adv Res 4(5):385–390CrossRefGoogle Scholar
  121. 121.
    Colicchia C, Marchet G, Melacini M et al (2013) Building environmental sustainability: empirical evidence from logistics service providers. J Clean Prod 59:197–209CrossRefGoogle Scholar
  122. 122.
    Ho Y-H, Lin C-Y, Tsai J-S (2014) An empirical study on organizational infusion of green an empirical study on organizational infusion of green practices in Chinese logistics companies. J Econ Soc Stud 4(2):65–78CrossRefGoogle Scholar
  123. 123.
  124. 124.
    Pappis CP (2011) Climate change, supply chain management and enterprise adaptation: implications of global warming on the economy. Hershey, Pa. Information science reference. Eurospan, LondonGoogle Scholar
  125. 125.
    Rakhmangulov A, Osintsev N, Muravev D, Sladkowski A (2017) An approach to achieving the sustainable development goals based on the system of green logistics methods and instruments. In: IX international science conference and VI international symposium of young researches “Transport problems 2017”. Conference proceedings.  Silesian University of Technology, Faculty of Transport, Katowice, pp 541–556Google Scholar
  126. 126.
    Eggleston HS (2006) IPCC guidelines for national greenhouse gas inventories. Institute for Global Environmental Strategies, Hayama, JapanGoogle Scholar
  127. 127.
    Chang D-Y (1996) Applications of the extent analysis method on fuzzy AHP. Eur J Oper Res 95(3):649–655CrossRefMathSciNetzbMATHGoogle Scholar
  128. 128.
    Gumus AT (2009) Evaluation of hazardous waste transportation firms by using a two step fuzzy-AHP and TOPSIS methodology. Expert Syst Appl 36(2):4067–4074CrossRefMathSciNetGoogle Scholar
  129. 129.
    Awasthi A, Chauhan SS, Omrani H (2011) Application of fuzzy TOPSIS in evaluating sustainable transportation systems. Expert Syst Appl 38(10):12270–12280CrossRefGoogle Scholar
  130. 130.
    Patil SK, Kant R (2014) A fuzzy AHP-TOPSIS framework for ranking the solutions of knowledge management adoption in supply chain to overcome its barriers. Expert Syst Appl 41(2):679–693CrossRefGoogle Scholar
  131. 131.
    Sun C-C (2010) A performance evaluation model by integrating fuzzy AHP and fuzzy TOPSIS methods. Expert Syst Appl 37(12):7745–7754CrossRefGoogle Scholar
  132. 132.
    Sirisawat P, Kiatcharoenpol T (2018) Fuzzy AHP-TOPSIS approaches to prioritizing solutions for reverse logistics barriers. Comput Ind Eng 117:303–318CrossRefGoogle Scholar
  133. 133.
    Saaty TL (1980) The analytical hierarchical process. McGraw-Hill, New YorkGoogle Scholar
  134. 134.
    Cheng C-H, Yang K-L, Hwang C-L (1999) Evaluating attack helicopters by AHP based on linguistic variable weight. Eur J Oper Res 116(2):423–435CrossRefzbMATHGoogle Scholar
  135. 135.
    Yang C-C, Chen B-S (2004) Key quality performance evaluation using fuzzy AHP. J Chin Inst Ind Eng 21(6):543–550Google Scholar
  136. 136.
    Hwang C-L, Yoon K (1981) Multiple attribute decision making: methods and applications a state-of-the-art survey. Springer, Berlin, HeidelbergCrossRefzbMATHGoogle Scholar
  137. 137.
    Behzadian M, Khanmohammadi Otaghsara S, Yazdani M et al (2012) A state-of the-art survey of TOPSIS applications. Expert Syst Appl 39(17):13051–13069CrossRefGoogle Scholar
  138. 138.
    Salih MM, Zaidan BB, Zaidan AA et al (2019) Survey on fuzzy TOPSIS state-of-the-art between 2007 and 2017. Comput Oper Res 104:207–227CrossRefMathSciNetzbMATHGoogle Scholar
  139. 139.
    Kannan D, Jabbour ABLdS, Jabbour CJC (2014) Selecting green suppliers based on GSCM practices. Eur J Oper Res 233(2):432–447CrossRefzbMATHGoogle Scholar
  140. 140.
    Prakash C, Barua MK (2015) Integration of AHP-TOPSIS method for prioritizing the solutions of reverse logistics adoption to overcome its barriers under fuzzy environment. J Manuf Syst 37:599–615CrossRefGoogle Scholar
  141. 141.
    Nădăban S, Dzitac S, Dzitac I (2016) Fuzzy TOPSIS. Procedia Comput Sci 91:823–831CrossRefzbMATHGoogle Scholar
  142. 142.
    Кaтин BД, Maйopoвa ЛП, Tищeнкo BП (2015) Oxpaнa oкpyжaющeй cpeды в тpaнcпopтнoй oтpacли. Xaбapoвcк: Изд-вo Tиxooкeaн. гoc. yн-тa (In Russian: Katin VD, Maiorova LP, Tishchenko VP (2015) Environmental protection in the transport industry. Pacific State University Publishing House, Khabarovsk)Google Scholar
  143. 143.
    Mиpoтин ЛБ (2002) Tpaнcпopтнaя лoгиcтикa. Mocквa: Издaтeльcтвo “Экзaмeн” (In Russian: Mirotin LB (2002) Transport logistics. Publishing House “Ekzamen”, Moscow)Google Scholar
  144. 144.
    Бoчapникoв BП (2001) Fuzzy-Texнoлoгия: Maтeмaтичecкиe ocнoвы. Пpaктикa мoдeлиpoвaния в экoнoмикe. Caнкт-Пeтepбypг: Hayкa (In Russian: Bocharnikov VP (2001) fuzzy-technology: mathematical foundations. Modeling practice in economics. Science, St. Petersburg)Google Scholar
  145. 145.
    Лeoнeнкoв AB (2005) Heчeткoe мoдeлиpoвaниe в cpeдe MATLAB и fuzzyTECH. Caнкт-Пeтepбypг: БXB-Пeтepбypг IIn Russian: Leonenkov AV (2005) Fuzzy modeling in MATLAB and fuzzyTECH. BKHV-Peterburg, St. Petersburg)Google Scholar
  146. 146.
    FuzzyTECH (2018). https://fuzzytech.com/

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Nikita Osintsev
    • 1
    Email author
  • Aleksandr Rakhmangulov
    • 1
  • Aleksander Sładkowski
    • 2
  • Natalja Dyorina
    • 1
  1. 1.Department of Logistics and Transportation System ManagementNosov Magnitogorsk State Technical UniversityMagnitogorskRussia
  2. 2.Faculty of Transport, Department of Logistics and Transport TechnologiesSilesian University of TechnologyKatowicePoland

Personalised recommendations