The Impact of Road Transport on the Environment

  • Jozef GnapEmail author
  • Branislav Šarkan
  • Vladimír Konečný
  • Tomáš Skrúcaný
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 124)


Exhaust gas emissions from road vehicles influences the environment and life quality of inhabitants, mainly in urban areas. The production of harmful emissions was rapidly decreased by introducing emission standards and limits. Opposite them, the huge increasing number of operated vehicles, mainly in developed countries f. e. in Europe, it eliminates the advantages of new and environmental friendlier vehicles. One of useful solution for health protection of urban inhabitants seems the introducing and supporting alternative propulsions in vehicles—hybrid vehicles and full electric vehicles. Transport and its direct activities are important consumers of energy and producers of greenhouse gases (GHG). The energy intensity and specific GHG production from transport activities are the key targets of the near future in the course of sustainable transport and mobility. There are different approaches to calculate GHG emissions from transport worldwide. In Europe, this has led to the need to standardize the methodology of GHG emissions calculation, the result is European standard EN 16258.


Road vehicle emissions Hybrid vehicle Energy intensity GHG production Sustainability Transport services 


  1. 1.
    White Paper—Roadmap to a single European transport area—towards a competitive and resource efficient transport system. URL
  2. 2.
    Gergeľová M et al (2012) Prognóza vývoja dopravy a produkcie emisií z dopravy. Transfer inovácií. 24. URL [In Slovak: A forecast of development of transport and production of emissions from transport]
  3. 3.
    Slovak Environment Agency—Sectoral indicator report—Transport. Transport and the environment in the Slovak Republic (2017). URL
  4. 4.
    Olivier JGJ et al (2016) Trends in global CO2 emissions: 2016 Report. European Commission, Joint Research Centre (JRC), Directorate C—Energy, Transport and Climate; PBL Netherlands Environmental Assessment Agency, The Hague. JRC103425, PBL2315. URL
  5. 5.
    European Commission, Policies of the European Union (2014) Climate actions, Brussels. URL
  6. 6.
    European Union Emission Inventory Report 1990–2015 Under the UNECE Convention on Long-Range Transboundary Air Pollution (LRTAP) (2017) EEA Report No. 9/2017. URL
  7. 7.
    Koreňová Ľ (2016) Emisie skleníkových plynov z dopravy. Slovak Environment Agency. URL [In Slovak: Greenhouse gas emissions from transport]
  8. 8.
    European Environment Agency, EEA, Greenhouse gas emissions from transport 1453 (2015). URL
  9. 9.
    European Environment Agency, EEA, Emissions of air pollutants from transport (2017). URL
  10. 10.
    Moravčík Ľ (2013) Sprísňovanie emisných limitov cestných motorových vozidiel. Svet dopravy. URL [In Slovak: Tightening of emission limits of road motor vehicles
  11. 11.
    Šarkan B, Vrábel J, Skrúcaný T (2016) Diagnostikovanie cestných vozidiel. Žilina: University of Žilina [In Slovak: Diagnostics of road vehicles]Google Scholar
  12. 12.
    Rievaj V et al (2015) Automobil v pohybe. Bratislava: DOLIS [In Slovak: Automobile in motion]Google Scholar
  13. 13.
    Gnap J, Settey T, Slávik R (2019) Proposal for a procedure for assessing the benefits of using hybrid car technology for the environment in smaller cities. In: XI international science conference on VIII international symposium of young researches “Transport Problems’2019”. Conference Proceedings. Katowice: Silesian University of Technology. Faculty of Transport, pp 833–843Google Scholar
  14. 14.
    Vojtisek-Lom M, Cobb JT Jr (1997) Vehicle mass emissions measurement using a portable 5-gas exhaust analyzer and engine computer data. Project: Poor man’s PEMS—low cost, simple portable on-board exhaust emissions monitoring systems. URL
  15. 15.
    Kuranc A (2015) Exhaust emission test performance with the use of the signal from air flow meter. Eksploatacja i Niezawodnosc—Mainten Reliab 17(1):129–134CrossRefGoogle Scholar
  16. 16.
    Hudak M, Madlenak R (2017) The research of driver distraction by visual smog on selected road stretch in Slovakia. Procedia Engineering 178:472–479CrossRefGoogle Scholar
  17. 17.
    Machalikova J, Sejkorova M, Livorova M, Kocourek L, Corny S (2010) Possibilities of reducing the consumption of lubricants in traffic. The 4th Czech-Slovak scientific conference: transport, health and environment, pp 185–194Google Scholar
  18. 18.
    Osipowicz T, Abramek KF, Matuszak Z, Jaskiewicz M, Ludwinek KA, Lagowski P (2018) The concept of annular channels application on the spraying nozzle needle of modern fuel injector in the aspect of combustion process improvement. In: 11th international scientific and technical conference on automotive safety, Casta Papiernicka, SlovakiaGoogle Scholar
  19. 19.
    Droździel P, Krzywonos L (2009) The estimation of the reliability of the first daily diesel engine start-up during its operation in the vehicle. Eksploatacja i Niezawodność. 41(1):4–10Google Scholar
  20. 20.
    European Automobile Manufacturers Association. ACEA report. Vehicles in use (2018). URL
  21. 21.
    Kubíková S, Kalašová A, Černický Ľ (2014) Microscopic simulation of optimal use of communication network. In: Telematics—Support for Transport. TST 2014. Communications in computer and information science, pp 414–423, Katowice—Ustroń, 22–25 Oct 2014Google Scholar
  22. 22.
    Ondruš J, Vrábel J, Kolla E (2018) The influence of the vehicle weight on the selected vehicle braking characteristics. In: Transport means 2018. Part I: proceedings of the international scientific conference, pp 384–390Google Scholar
  23. 23.
    Wasilewski J, Kuranc A, Szyszlak-Bargłowicz J, Stoma M, Słowik T, Barta D (2017) Assessment of efficiency of an agricultural tractor engine for different rotational speeds. Farm machinery and processes management in sustainable agriculture: symposium proceedings. Lublin: University of Life Sciences in Lublin, pp 406–410Google Scholar
  24. 24.
    Slavik R, Gnap J (2019) Selected problems of night—time distribution of goods within city logistics. Transp Res Proced 40:497–504CrossRefGoogle Scholar
  25. 25.
    Gagnom L, Dore G, Richard MJ (2015) An overview of various new road profile quality evaluation criteria: part 1. Int J Pavement Eng 16(3):224–238CrossRefGoogle Scholar
  26. 26.
    Eionet Report—Vehicle Emissions and Impacts of Taxes and Incentives in the Evolution of Past Emissions—European Environment Agency (April 2018)Google Scholar
  27. 27.
    Air quality assessment in Slovakia 2017, Slovak Hydrometeorological Institute, Bratislava (2018)Google Scholar
  28. 28.
    Report on the State of the Environment of the Slovak Republic in 2017, Ministry of Environment of the Slovak Republic. URL
  29. 29.
    Veselik P, Sejkorova M, Nieoczym A, Caban J (2020) Outlier identification of concentrations of pollutants in environmental data using modern statistical methods. Polish J Environ Stud 29(1):853–860CrossRefGoogle Scholar
  30. 30.
    Sun X-H, Yamamoto T, Takahashi K, Morikawa T (2018) Home charge timing choice behaviors of plug-in hybrid electric vehicle users under a dynamic electricity pricing scheme. Transportation 45(6):1849–1869CrossRefGoogle Scholar
  31. 31.
    Wu W, Chuang B-N, Hwang J-J, Lin C-K, Yang S-B (2019) Techno-economic evaluation of a hybrid fuel cell vehicle with on-board MeOH-to-H2 processor. Appl Energy 238:401–412CrossRefGoogle Scholar
  32. 32.
    Skrúcany T (2016) Možnosti zníženia spotreby energie pri poskytovaní vybraných dopravných služieb. PhD Thesis. University of Žilina in Žilina, Faculty of Operation and Economics of Transport and Communications [In Slovak: Options to reduce the energy consumption while providing selected transport services]Google Scholar
  33. 33.
    Decree No. 191/2017 Coll. The Ministry of the Environment of the Slovak Republic laying down sustainability criteria and targets for the reduction of greenhouse gas emissions from fuelsGoogle Scholar
  34. 34.
    Figlus T, Liscak S, Wilk A et al (2014) Condition monitoring of engine timing system by using wavelet packet decomposition of an acoustic signal. J Mech Sci Technol 28(5):1663–1671CrossRefGoogle Scholar
  35. 35.
    Milojevic S, Pesic R (2018) Determination of combustion process model parameters in diesel engine with variable compression ratio. J Combust 5292837:1–11CrossRefGoogle Scholar
  36. 36.
    Jurkovic M, Kalina T, Teixeira AF (2017) Possibilities of using alternative fuels for transport solution in Brazil. In: Proceedings of the 21st international scientific conference transport means, pp 724–728Google Scholar
  37. 37.
    Rievaj V, Synak F (2017) Does electric car produce emissions? Sci J Silesian Univ Technol, Ser Transp 94:187–197Google Scholar
  38. 38.
    Regulation No. 337/2012 Coll. Decree of the Ministry of Economy of the Slovak Republic, by which the energy efficiency of energy conversion during operation, reconstruction and building of installation for electricity production and installation for heat production is establishedGoogle Scholar
  39. 39.
    Annual Report of Slovenská prenosová sústava, a. s. URL
  40. 40.
    Skrúcaný T, Kendra M, Stopka O et al (2019) Impact of the electric mobility implementation on the greenhouse gases production in Central European countries. Sustainability 11(18):1–15CrossRefGoogle Scholar
  41. 41.
    European standard EN 16 258:2012. Methodology for calculation and declaration of energy consumption and GHG emissions of transport services (freight and passengers)Google Scholar
  42. 42.
    IAEA Bulletin, Changing realities (1998) International Atomic Energy Agency, vol 1, p 3Google Scholar
  43. 43.
    Decree no. 88/2015 of the Ministry of Economy of the Slovak Republic laying down the scope of evaluation, method of calculation and value of energy efficiency of sources and distributionGoogle Scholar
  44. 44.
    Lebkowski A (2019) Studies of energy consumption by a city bus powered by a hybrid energy storage system in variable road conditions. Energies 12(5):951CrossRefGoogle Scholar
  45. 45.
    Ližbetin J, Hlatká M, Bartuška L (2018) Issues concerning declared energy consumption and greenhouse gas emissions of FAME biofuels. Sustainability 10(9):3025CrossRefGoogle Scholar
  46. 46.
    Skrúcaný T, Semanová Š, Figlus T, Šarkan B, Gnap J (2017) Energy intensity and GHG production of chosen propulsions used in road transport. Commun Sci Lett Univ Žilina 19(2):3–9Google Scholar
  47. 47.
    Stojanovic D, Veličkovic M (2012) The impact of freight transport on greenhouse gases emissions in Serbian cities—the case of Novi Sad. Metal Int 17(6):196–202Google Scholar
  48. 48.
    Vaishnav P (2014) Greenhouse gas emissions from international transport. Issues Sci Technol 30(2):25–28Google Scholar
  49. 49.
    Ivkovic I, Čokorilo O, Kaplanovic S (2018) The estimation of GHG emission costs in road and air transport sector: case study of Serbia. Transport. 33(1):260–267CrossRefGoogle Scholar
  50. 50.
    EN 16258:2012. Methodology for calculation and declaration of energy consumption and GHG emissions of transport services (freight and passengers). CEN, Brussels (2012)Google Scholar
  51. 51.
    Konečný V (2011) Výpočet množstva emisií. Truck and business: a quarterly for the business strategy in road transport 4(1):16–17 [In Slovak: Energy consumption and GHG emissions]Google Scholar
  52. 52.
    Kišša M (2013) Návrh kalkulátora spotreby energie a emisií skleníkových plynov podľa normy STN EN 16258:2013. MSc Thesis. [In Slovak: Suggestion of a calculator of the energy consumption and greenhouse gas emissions per STN EN 16258:2013 Standard]Google Scholar
  53. 53.
    STN CEN/TR 14310:2003 Služby nákladnej dopravy. Vyhlasovanie a podávanie správ o environmentálnom správaní v sieťach nákladnej dopravy. SÚTN, Bratislava (2003) [In Slovak: Freight transport services. The promulgation and reporting of environmental performance in freight transport network]Google Scholar
  54. 54.
    Konečný V, Šimková I (2013) The declaration of environmental acceptability of road freight transport. Perner’s Contacts 8(2):70–78Google Scholar
  55. 55.
    Gnap J, Konečný V (2010) Výpočet produkcie emisií z nákladnej dopravy. In: Professional conference ZLZ SR 2010, Šamorín—Čilistov: Collection of Papers. Bratislava; Žilina: Zväz logistiky a zasielateľstva SR; University of Žilina, pp 18–23 [In Slovak: Calculation of the emission production from freight transport]Google Scholar
  56. 56.
    Kellner F, Otto A (2012) Allocating CO2 emissions to shipments in road freight transportation. J Manag Contr 22(4):451–479CrossRefGoogle Scholar
  57. 57.
    Jevinger A, Persson JA (2016) Consignment-level allocations of carbon emissions in road freight transport. Transp Res Part D: Transp Environ 48:298–315CrossRefGoogle Scholar
  58. 58.
    Guide on Calculating GHG emissions for freight forwarding and logistics services (2012) CLECATGoogle Scholar
  59. 59.
    Konečný V, Petro F (2017) Zákaznícky princíp pri deklarovaní spotreby energie a produkcie emisií skleníkových plynov z rozvozových úloh v zmysle normy STN EN 16258. Railway Transport and Logistics 13(1):3–9 [In Slovak: A customer principle during the declaration of the energy consumption and production of greenhouse gas emissions from distribution tasks per STN EN 16258 Standard]Google Scholar
  60. 60.
    Maibach M et al (2008) Handbook on estimation of external costs in transport sector. CE DelftGoogle Scholar
  61. 61.
    Petro F, Konečný V (2019) Calculation of external costs from production of direct and indirect emissions from traffic operation. Transcom 2019: conference proceedings. Elsevier Science, Amsterdam, pp 1162–1167Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jozef Gnap
    • 1
    Email author
  • Branislav Šarkan
    • 1
  • Vladimír Konečný
    • 1
  • Tomáš Skrúcaný
    • 1
  1. 1.Department of Road and Urban Transport, Faculty of Operation and Economics of Transport and CommunicationUniversity of ZilinaZilinaSlovakia

Personalised recommendations