The Gaseous Fuels Towards Contemporary Economic and Ecological Challenges

  • Marek Flekiewicz
  • Grzegorz KubicaEmail author
  • Paweł Fabiś
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 124)


Alternative fuels play a key role among many directions of action taken in implementing climate change-related activities. The search for clean, low-carbon and renewable motor fuels is one of the main directions of research and development conducted worldwide. This study discusses issues regarding the use of selected gaseous fuels to power motor vehicles, i.e. hydrogen (H2), hydrogen-methane mixtures (HCNG) and dimethyl ether (DME). Also presented are the results of research on the use of gas fuel mixtures that ensure the efficiency of energy conversion and contribute to reducing emissions.


Hydrogen Methane DME Gaseous fuels IC engine Fuel cell 


  1. 1.
    International Energy Outlook 2019 with projections to 2050. IEO2019.
  2. 2.
    ITF Transport Outlook (2017) OECD Publishing. Paris.
  3. 3.
    Marchetti C (1985) When will hydrogen come? Int J Hydrog Energy 10:215–219CrossRefGoogle Scholar
  4. 4.
    Flekiewicz M, Kubica G, Wilk K (2009) The analysis of heat release process in SI engine fed on natural gas and methane-hydrogen blends. In: 12th EAEC European Automotive Congress, SAITS—FISITA, BratysławaGoogle Scholar
  5. 5.
    Flekiewicz M, Kubica G, Flekiewicz B (2009) Hydrogen enriched CNG—a tool for dual fuel engine overall performance improvement. SAE Technical Paper no. 2009-01-2681Google Scholar
  6. 6.
    Mello P, Pelliza G, Cataluna R, da Silva R (2006) Evaluation of the maximum horsepower of vehicles converted for use with natural gas fuel. Fuel 85(14):2180–2186CrossRefGoogle Scholar
  7. 7.
    Kubica G (2007) Badanie procesu spalania w silniku samochodu Opel Astra I 1.6 zasilanym sprężonym gazem ziemnym. Wydawnictwo Politechniki Śląskiej z.61, Gliwice, pp 157–164 (In Polish: Investigation of the combustion process in an Opel Astra I 1.6 engine powered by compressed natural gas)Google Scholar
  8. 8.
    Reinecke E, Teodorczyk A (2011) Integration of experimental facilities: a joint effort for establishing a common knowledge base in experimental work on hydrogen safety. Int J Hydrogen Energy 36:2700–2710CrossRefGoogle Scholar
  9. 9.
    Venetsanos AG, Teodorczyk A (2009) An Inter-comparison exercise on the capabilities of CFD models to predict the short and long term distribution and mixing of hydrogen in a garage. Int J Hydrogen Energy 34:5912–5923CrossRefGoogle Scholar
  10. 10.
    Pütz K, Nørbech T (2013) The way ahead for hydrogen in transport in Norway. Which lessons can be learned from the successful implementation of battery electric vehicles? Background paper for the IFP/IEA/ITF Workshop on “Developing infrastructure for alternative transport fuels and power-trains to 2020/2030/2050: A cross country assessment of early stages of implementation” OECD.
  11. 11.
    Hythane Company LLC (2008) The hythane system.
  12. 12.
    Berckmüller M, Rottengruber H, Eder A, Brehm N, Elsässer G, Müller-Alander G et al (2003) Potentials of a charged SI-hydrogen engine. SAE paper no. 2003-01-3210Google Scholar
  13. 13.
    Jing-Ding L, Ying-Qing L, Tian-Shen D (1986) Improvement on the combustion of a hydrogen fueled engine. Int J Hydrogen Energy 11(10):661–668CrossRefGoogle Scholar
  14. 14.
    Rottengruber H, Berckmüller M, Elsässer G, Brehm N, Schwarz C (2004) A high-efficient combustion concept for direct injection hydrogen internal combustion engine. In: 15th world hydrogen energy conference. Paper nr 28J-01. Yokohama, JapanGoogle Scholar
  15. 15.
    Sierens R, Verhelst S (2003) Influence of the injection parameters on the efficiency and power output of a hydrogen fueled engine. Trans ASME J Eng Gas Turbines Power 125(3):444–449Google Scholar
  16. 16.
    Verhelst S, Sierens R (2007) Combustion studies for PFI hydrogen IC engines. SAE, paper nr 2007-01-3610Google Scholar
  17. 17.
    Verhelst S, Maesschalck P, Rombaut N, Sierens R (2009) Efficiency comparison between hydrogen and gasoline, on a bi-fuel hydrogen/gasoline engine. Int J Hydrogen Energy 34(5):2504–2510CrossRefGoogle Scholar
  18. 18.
    The Department of Energy Hydrogen and Fuel Cells Program Plan (2011) An integrated strategic plan for the research, development, and demonstration of hydrogen and fuel cell technologies. DOE/EE-0651
  19. 19.
    Verhelst S, Verstraeten S, Sierens R (2006) A critical review of experimental research on hydrogen fueled SI engines. SAE, technical paper nr 2006-01-0430Google Scholar
  20. 20.
    Bleechmore C, Brewster S (2007) Dilution strategies for load and NOx management in a hydrogen fueled direct injection engine. SAE paper no. 2007-01-4097Google Scholar
  21. 21.
    Heffel JW (2003) NOx emission reduction in a hydrogen fueled internal combustion engine at 3000 rpm using exhaust gas recirculation. Int J Hydrogen Energy 28:1285–1292CrossRefGoogle Scholar
  22. 22.
    Ji C, Wang S (2009) Effect of hydrogen addition on the idle performance of a spark ignited gasoline engine at stoichiometric condition. Int J Hydrogen Energy 34(8):3546–3556CrossRefGoogle Scholar
  23. 23.
    Project coordinator motor vehicles and road transport. TÜV Rheinland e.V. for the Federal Ministry for Research and Technology (1990) Alternative energy sources for road transport—hydrogen drive test. Technical report. TÜV Rheinland. Cologne. GermanyGoogle Scholar
  24. 24.
    Subramanian V, Mallikanjuna JM, Ramesh A (2007) Effect of water injection and spark timing on the nitric oxide emission and combustion parameters of a hydrogen fueled spark ignition engine. Int J Hydrogen Energy 32:1159–1173CrossRefGoogle Scholar
  25. 25.
    Stebar RF, Parks FB (1974) Emission control with lean operation using hydrogen-supplemented fuel, SAE paper 740187Google Scholar
  26. 26.
    Varde KS (1981) Combustion characteristics of small spark ignition engines using hydrogen supplemented fuel mixtures. SAE paper 810921Google Scholar
  27. 27.
    Nagalingam B, Deubel F, Schmillen K (1983) Performance study using natural gas, hydrogen supplemented natural gas and hydrogen in AVL research engine. Int J Hydrogen Energy 8(9):715–720CrossRefGoogle Scholar
  28. 28.
    Karim GA, Wierzba I, Al-Alousi Y (1996) Methane-hydrogen mixtures as fuels. Int J Hydrogen Energy 21(7):625–631CrossRefGoogle Scholar
  29. 29.
    Wierzba I, Ale BB (2000) Rich flammability limits of fuel mixtures involving hydrogen at elevated temperatures. Int J Hydrogen Energy 25:75–80CrossRefGoogle Scholar
  30. 30.
    Bauer CG, Forest TW (2001) Effect of hydrogen addition on the performance of methane-fueled vehicles. Part I: effect on S.I. engine. Int J Hydrogen Energy 26(1):55–70Google Scholar
  31. 31.
    Kahramana N, Çepera B, Akansua SO, Aydin K (2009) Investigation of combustion characteristics and emissions in a spark-ignition engine fuelled with natural gas–hydrogen blends. Int J Hydrogen Energy 34(2):1026–1034CrossRefGoogle Scholar
  32. 32.
    Morrone B, Unich A (2009) Numerical investigation on the effects of natural gas and hydrogen blends on engine combustion. Int J Hydrogen Energy 34(10):4626–4634CrossRefGoogle Scholar
  33. 33.
    Thurnheer T, Soltic P, Dimopoulos P, Eggenschwiler (2009) S.I. engine fuelled with gasoline, methane and methane/hydrogen blends: heat release and loss analysis. Int J Hydrogen Energy 34(5):2494–2503Google Scholar
  34. 34.
    Li B, Li H, Ma J, Wang H (2010) PEM fuel cells: current status and challenges for electrical vehicle applications. J Autom Saf Energy 1:260–269Google Scholar
  35. 35.
    Bach C, Lämmle C, Bill R, Soltic P, Dyntar D, Jammer P et al (2004) Clean engine vehicle: a natural gas driven Euro-4/SULEV with 30% CO2 emission. SAE paper no. 2004-01-0645Google Scholar
  36. 36.
    Postrzednik S (2009) Engine gas-fuel from coal for combustion engines. Combustion engines. Seria specjalna PTNSS-2009-SC-026. Bielsko Biała, pp 62–67Google Scholar
  37. 37.
    Bysveen M (2006) Engine characteristics of emissions and performance using mixtures of natural gas and hydrogen. Energy 32:482–489CrossRefGoogle Scholar
  38. 38.
    Pede G, Rossi E, Chiesa M, Ortenzi F (2007) Test of blends of hydrogen and natural gas in a light duty vehicle, SAE Technical Paper 2007-01-2045Google Scholar
  39. 39.
    Szwaja S (2009) Hydrogen rich gases combustion in the IC engine. J Kones—Powertrain Transp 16(4):447–455 (Warsaw)Google Scholar
  40. 40.
    Wallner T, Ng HK, Peters R (2007) The effects of blending hydrogen with methane on engine operating, efficiency and emissions. SAE Technical Paper 2007-01-0474Google Scholar
  41. 41.
    Flekiewicz M, Kubica G (2008) Badania przebiegu procesu spalania alternatywnych paliw gazowych i ich mieszanek z wodorem w silniku ZI; Mechanika 8-M z.12 (105), Wydawnictwo Politechniki Krakowskiej, Kraków, pp 151–160 (In Polish: Examination of combustion process of alternative gaseous fuels and their mixtures enriched by hydrogen in a SI engine)Google Scholar
  42. 42.
    Flekiewicz M, Kubica G, Flekiewicz B (2008) The possibility of the SI engine CO2 emission reduction with the application of CNG-hydrogen blends. J Kones 15(3):139–146Google Scholar
  43. 43.
    Kubica G (2008) Badania rozwoju i przebiegu procesu spalania alternatywnych paliw gazowych i ich mieszanek z wodorem w silniku ZI. Wydawnictwo Politechniki Śląskiej z.64, Gliwice, pp 159–166 (In Polish: An investigation of initiation and course of combustion process in SI engine fueled with alternative gas fuels and its hydrogen blends)Google Scholar
  44. 44.
    Yap D, Peucheret SM, Megaritis A, Wyszynski ML, Xu HM (2006) Natural gas HCCI engine operation with exhaust gas fuel reforming. Int J Hydrogen Energy 31(5):587–595CrossRefGoogle Scholar
  45. 45.
    Hoekstra RL, Van Blarigan P, Mulligan N (1996) NOx emissions and efficiency of hydrogen, natural gas, and hydrogen = natural gas blended fuels. SAE Paper no. 961103Google Scholar
  46. 46.
    Dykier M, Flekiewicz M, Kubica G (1998) Wybrane problemy adaptacji silników spalinowych do zasilania paliwem gazowym; Czasopismo techniczne M 5, Wydawnictwo Politechniki Krakowskiej, Kraków, pp 154–162 (In Polish: Problems in combustion engine adaptation for gas feeding)Google Scholar
  47. 47.
    Kubica G (2002) Wpływ parametrów regulacyjnych na proces spalania w silniku ZI zasilanym paliwem gazowym (LPG). Wydawnictwo Politechniki Śląskiej z.44, Gliwice, pp 101–111 (In Polish: Impact of regulatory parameters on the combustion process in a SI engine fueled with gas (LPG))Google Scholar
  48. 48.
    Merkisz J, Fuć P, Lijewski P (2008) Reductions of NOx emission from diesel engines by the application of ceramic oxygen conductors. In: Brebbia CA (ed) Urban transport and the environment in the 21st century. WIT Press, Southampton, Boston, pp 355–367, ISBN 978-1-84564-123-8 (Urban Transport XIV)Google Scholar
  49. 49.
    Wyszyński ML, Xu HM (2005) HCCI with standard and alternative fuels at moderate compression ratios—challenges in research and vehicle engines. J Kones Int Combust Engines 12(3):397–408Google Scholar
  50. 50.
    Stelmasiak Z, Larisch J, Semikow J (2009) Analysis of a chosen combustion parameters of dual fuel SI engine fuelled with alcohol and gasoline, Combustion Engines, No 2/2009, pp 26–36Google Scholar
  51. 51.
    Wyszynski ML (2003) Zielone silniki—wodór z reformingu paliw poprzez technologie LEAF. Archiwum Spalania 3 (2–4). ISSN 1641-8549, pp 5–20 (In Polish: Greener, Leaner and Smoother Engines—Hydrogen from LEAF Fuel Reforming)Google Scholar
  52. 52.
    Ono R, Nifuku S, Fujiwara S, Horiguchi S, Oda T (2007) Minimum ignition energy of hydrogen-air mixture: effects of humidity and spark duration. J Electrostat 65:87–93CrossRefGoogle Scholar
  53. 53.
    Hong SW, Shin YS, Song JH, Chang SH (2003) Performance test of the quenching meshes for hydrogen control. J Nucl Sci Technol 40(10):814–819CrossRefGoogle Scholar
  54. 54.
    Karim GA (2003) Hydrogen as a spark ignition engine fuel. Int J Hydrogen Energy 28:569–577CrossRefGoogle Scholar
  55. 55.
    White CM, Steeper RR, Lutz AE (2006) The hydrogen-fueled internal combustion engine: a technical review. Int J Hydrogen Energy 31:1292–1305CrossRefGoogle Scholar
  56. 56.
    Stambouli AB, Traversa E (2002) Fuel cells, an alternative to standard sources of energy. Renew Sustain Energy Rev 6:295–304CrossRefGoogle Scholar
  57. 57.
    Yang WC (2000) Fuel cell electric vehicles: recent advances and challenges—review. Int J Autom Technol 1:9–16Google Scholar
  58. 58.
    Emadi A, Williamson SS, Khaligh A (2006) Power electronics intensive solutions for advanced electric, hybrid electric, and fuel cell vehicular power systems. IEEE Trans Power Electron 21:567–577CrossRefGoogle Scholar
  59. 59.
    Emadi A, Williamson SS (2004) Fuel cell vehicles: opportunities and challenges. In: Proceedings of power engineering society general meeting. IEEE, Denver, CO, pp 1640–1645Google Scholar
  60. 60.
    Köster F, Ulmer MW, Mattfeld DC (2015) Cooperative traffic control management for city logistic routing. Transp Res Proc 10:673–682CrossRefGoogle Scholar
  61. 61.
    Transport in the European Union Current Trends and Issues (2018) European Commission, Directorate-General Mobility and Transport, B-1049 BrusselsGoogle Scholar
  62. 62.
    Eberle U, von Helmolt R (2010) Fuel cell electric vehicles, battery electric vehicles, and their impact on energy storage technologies. Electr Hybrid Veh. ISBN 978-0-444-53565-8.
  63. 63.
    Lide DR (ed) (2009) CRC handbook of chemistry and physics, vol 90. CRC Press, Boca Raton, ISBN 978-1-4200-9084-0Google Scholar
  64. 64.
    Borgna B (2013) Volvo Trucks and Shell Announce Global LNG Fuel Collaboration, 27 Mar 2013.
  65. 65.
    Das HS, Tan CW, Yatim AHM (2017) Fuel cell hybrid electric vehicles: a review on power conditioning units and topologies. Renew Sustain Energy Rev 76:268–291CrossRefGoogle Scholar
  66. 66.
    DME Handbook (2006) Japan DME Forum Ohmsha Ltd. JapanGoogle Scholar
  67. 67.
    Zhang L, Huang Z (2007) Life cycle study of coal-based dimethyl ether as vehicle fuel for urban bus in China. Energy 32:1896–1904CrossRefGoogle Scholar
  68. 68.
    Brusstar MJ, Hamady FJ, Schaefer RM (2007) Low engine-out NOx emissions with DME using high pressure injection. U.S. EPA. SAE Technical Paper 2007-01-4093Google Scholar
  69. 69.
    Kim MY, Bang SH, Lee CS (2007) Experimental investigation of spray and combustion characteristics of dimethyl ether in a common-rail diesel engine. Energy Fuels 21(2):793–800CrossRefGoogle Scholar
  70. 70.
    Górski W, Jabłońska MM (2012) Eter dimetylowy—uniwersalne, ekologiczne paliwo XXI wieku. Nafta—Gaz. Instytut Nafty i Gazu—Państwowy Instytut Badawczy 68(9):631–641 (In Polish: Dimethylether—the universal, ecological fuel of the 21st century)Google Scholar
  71. 71.
    Fabiś P, Flekiewicz M (2013) Ocena dynamiki silnika spalinowego zasilanego mieszaniną LPG i DME. Zeszyty Naukowe Politechniki Śląskiej Seria Transport z. 81:31–44 (In Polish: The effects of blending Dimethyl Ether with LPG on engine operation and efficiency)Google Scholar
  72. 72.
    Flekiewicz M (2007) Studium eksperymentalne nad wykorzystaniem mieszaniny wodoru i metanu do napędu silników spalinowych. Wydawnictwo Politechniki Śląskiej z.61, Gliwice, pp 21–32 (In Polish: Experimental study for CNG and hydrogen mixing using to IC engines)Google Scholar
  73. 73.
    Flekiewicz M, Kubica G (2012) An influence of methane/hydrogen proportion in fuel blend on efficiency of conversion energy in SI engine. J Kones 19(3):117–124Google Scholar
  74. 74.
    Fuel Cell Handbook (7th edn) (2004) U.S. Department of Energy Office of Fossil EnergyGoogle Scholar
  75. 75.
    McTaggart-Cowan GP, Rogak SN, Munshi SR, Hill PG, Bushe WK (2010) Combustion in a heavy-duty direct-injection engine using hydrogen–methane blend fuels. Fuel 89(3):752–759CrossRefGoogle Scholar
  76. 76.
    Rakopoulosb CD, Scotta MA, Kyritsisa DC, Giakoumis EG (2008) Availability analysis of hydrogen/natural gas blends combustion in internal combustion engines. Energy 33(2):248–255CrossRefGoogle Scholar
  77. 77.
  78. 78.
    Campbell M, Wyszyński ŁP, Stone R (2004) Combustion of LPG in a spark-ignition engine. SAE Paper 2004-01-0974Google Scholar
  79. 79.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Marek Flekiewicz
    • 1
  • Grzegorz Kubica
    • 2
    Email author
  • Paweł Fabiś
    • 2
  1. 1.Auto Gaz ŚląskKatowicePoland
  2. 2.Faculty of Transport and Aviation Engineering, Department of Automotive Vehicle ConstructionSilesian University of TechnologyKatowicePoland

Personalised recommendations