Advertisement

Combining Networks Using Cherry Picking Sequences

  • Remie JanssenEmail author
  • Mark Jones
  • Yukihiro Murakami
Conference paper
  • 20 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12099)

Abstract

Phylogenetic networks are important for the study of evolution. The number of methods to find such networks is increasing, but most such methods can only reconstruct small networks. To find bigger networks, one can attempt to combine small networks. In this paper, we study the Network Hybridization problem, a problem of combining networks into another network with low complexity. We characterize this complexity via a restricted problem, Tree-child Network Hybridization, and we present an FPT algorithm to efficiently solve this restricted problem.

Keywords

Phylogenetic networks Network hybridization Tree-child networks FPT algorithms 

References

  1. 1.
    Baroni, M., Semple, C., Steel, M.: A framework for representing reticulate evolution. Ann. Comb. 8(4), 391–408 (2005)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bordewich, M., Semple, C.: Computing the minimum number of hybridization events for a consistent evolutionary history. Discret. Appl. Math. 155(8), 914–928 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Erdős, P.L., Semple, C., Steel, M.: A class of phylogenetic networks reconstructable from ancestral profiles. Math. Biosci. 313, 33–40 (2019)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Huber, K.T., Moulton, V., Semple, C., Wu, T.: Quarnet inference rules for level-1 networks. Bull. Math. Biol. 80(8), 2137–2153 (2018)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Huber, K.T., van Iersel, L., Moulton, V., Scornavacca, C., Wu, T.: Reconstructing phylogenetic level-1 networks from nondense binet and trinet sets. Algorithmica 77(1), 173–200 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Humphries, P.J., Linz, S., Semple, C.: Cherry picking: a characterization of the temporal hybridization number for a set of phylogenies. Bull. Math. Biol. 75(10), 1879–1890 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    van Iersel, L., Janssen, R., Jones, M., Murakami, Y., Zeh, N.: A practical fixed-parameter algorithm for constructing tree-child networks from multiple binary trees. arXiv preprint arXiv:1907.08474 (2019)
  8. 8.
    van Iersel, L., Kelk, S., Lekic, N., Whidden, C., Zeh, N.: Hybridization number on three rooted binary trees is EPT. SIAM J. Discret. Math. 30(3), 1607–1631 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    van Iersel, L., Linz, S.: A quadratic kernel for computing the hybridization number of multiple trees. Inf. Process. Lett. 113(9), 318–323 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    van Iersel, L., Moulton, V.: Trinets encode tree-child and level-2 phylogenetic networks. J. Math. Biol. 68(7), 1707–1729 (2014)MathSciNetzbMATHGoogle Scholar
  11. 11.
    van Iersel, L., Moulton, V.: Leaf-reconstructibility of phylogenetic networks. SIAM J. Discret. Math. 32(3), 2047–2066 (2018)MathSciNetCrossRefGoogle Scholar
  12. 12.
    van Iersel, L., Moulton, V., de Swart, E., Wu, T.: Binets: fundamental building blocks for phylogenetic networks. Bull. Math. Biol. 79(5), 1135–1154 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Janssen, R., Murakami, Y.: Solving phylogenetic network containment problems using cherry-picking sequences. arXiv preprint arXiv:1812.08065 (2018)
  14. 14.
    Linz, S., Semple, C.: Attaching leaves and picking cherries to characterise the hybridisation number for a set of phylogenies. Adv. Appl. Math. 105, 102–129 (2019)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Murakami, Y., van Iersel, L., Janssen, R., Jones, M., Moulton, V.: Reconstructing tree-child networks from reticulate-edge-deleted subnetworks. Bull. Math. Biol. 81(10), 3823–3863 (2019)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Oldman, J., Wu, T., Van Iersel, L., Moulton, V.: Trilonet: piecing together small networks to reconstruct reticulate evolutionary histories. Mol. Biol. Evol. 33(8), 2151–2162 (2016)CrossRefGoogle Scholar
  17. 17.
    Whidden, C., Beiko, R.G., Zeh, N.: Fixed-parameter algorithms for maximum agreement forests. SIAM J. Comput. 42(4), 1431–1466 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Delft Institute of Applied MathematicsDelft University of TechnologyDelftThe Netherlands
  2. 2.Centrum Wiskunde & InformaticaAmsterdamThe Netherlands

Personalised recommendations