Advertisement

A Review, Focused on Data Transfer Standards, of the Uncertainty Representation in the Digital Twin Context

  • José RíosEmail author
  • Georg Staudter
  • Moritz Weber
  • Reiner Anderl
Conference paper
  • 124 Downloads
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 565)

Abstract

In the context of the digital twin, the relevance and challenges of the uncertainty quantification are recognized. Data acquired in the physical domain are incorporated into a cyber-space to assist in predictive and decision-making processes. The acquisition of data in the physical domain involves the measurement of physical magnitudes. The digital as-built or as-manufactured model derives from measured or scanned data of a physical product. Thus, it is relevant to know how much the data are true. The uncertainty of a measured magnitude is a significant indicator of the data truthfulness. This work shows how the uncertainty is being modeled in standards related to product data representation and in an engineering data fusion context. The ongoing uncertainty modeling work in the Collaborative Research Center (SFB 805) at TU Darmstadt is presented as an example of a data fusion context.

Keywords

Uncertainty representation Digital twin Data fusion Standards 

Notes

Acknowledgment

The authors would like to thank the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) for funding this research – Project number 57157498 – SFB 805.

References

  1. 1.
    Tuegel, E.J., Ingraffea, A.R., Eason, T.G., Spottswood, S.M.: Reengineering aircraft structural life prediction using a digital twin. Int. J. Aerosp. Eng. 2011, 1–14 (2011)CrossRefGoogle Scholar
  2. 2.
    Lee, E.A.: Cyber-physical systems-are computing foundations adequate. In: Position Paper for NSF Workshop on Cyber-Physical Systems: Research Motivation, Techniques and Roadmap, vol. 2, pp. 1–9 (2006)Google Scholar
  3. 3.
    Ríos, J., Morate, F.M., Oliva, M., Hernández, J.C.: Framework to support the aircraft digital counterpart concept with an industrial design view. Int. J. Agile Syst. Manag. 9(3), 212–231 (2016)CrossRefGoogle Scholar
  4. 4.
    Kiritsis, D.: Closed-loop PLM for intelligent products in the era of the Internet of things. Comput. Aided Des. 43(5), 479–501 (2011)CrossRefGoogle Scholar
  5. 5.
    Monostori, L., et al.: Cyber-physical systems in manufacturing. CIRP Ann. 65(2), 621–641 (2016)CrossRefGoogle Scholar
  6. 6.
    Singh, V., Willcox, K.E.: Engineering design with digital thread. AIAA J. 56(11), 4515–4528 (2018)CrossRefGoogle Scholar
  7. 7.
    Tekkaya, A.E., et al.: Metal forming beyond shaping: predicting and setting product properties. CIRP Ann. 64(2), 629–653 (2015)CrossRefGoogle Scholar
  8. 8.
    Slotnick, J., et al.: CFD vision 2030 study: a path to revolutionary computational aerosciences. NASA/CR–2014-218178 (2014)Google Scholar
  9. 9.
    Lindau, B., Rosenqvist, M., Lindkvist, L., Söderberg, R.: Challenges moving from physical into virtual verification of sheet metal assemblies. In: ASME 2015 International Mechanical Engineering Congress and Exposition, Volume 2B: Advanced Manufacturing ASME (2015)Google Scholar
  10. 10.
    Uhlemann, T.H.J., Lehmann, C., Steinhilper, R.: The digital twin: realizing the cyber-physical production system for industry 4.0. Procedia CIRP 61, 335–340 (2017)CrossRefGoogle Scholar
  11. 11.
    Tao, F., Zhang, M.: Digital twin shop-floor: a new shop-floor paradigm towards smart manufacturing. IEEE Access 5, 20418–20427 (2017)CrossRefGoogle Scholar
  12. 12.
    Schleich, B., Anwer, N., Mathieu, L., Wartzack, S.: Shaping the digital twin for design and production engineering. CIRP Ann. 66(1), 141–144 (2017)CrossRefGoogle Scholar
  13. 13.
    Anderl, R., Maurer, M., Rollmann, T., Sprenger, A.: Representation, presentation and visualization of uncertainty. In: Chakrabarti, A. (ed.) CIRP Design 2012, pp. 257–266. Springer, London (2013).  https://doi.org/10.1007/978-1-4471-4507-3_25CrossRefGoogle Scholar
  14. 14.
    Coleman, H.W., Steele, W.G.: Experimentation, Validation, and Uncertainty Analysis for Engineers. Wiley, New Jersey (2018)CrossRefGoogle Scholar
  15. 15.
    Bertino, E.: Data trustworthiness—approaches and research challenges. In: Garcia-Alfaro, J., et al. (eds.) DPM/QASA/SETOP 2014. LNCS, vol. 8872, pp. 17–25. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-17016-9_2CrossRefGoogle Scholar
  16. 16.
    Morse, E., et al.: Tolerancing: managing uncertainty from conceptual design to final product. CIRP Ann. 67(2), 695–717 (2018)CrossRefGoogle Scholar
  17. 17.
    Zhang, M., Selic, B., Ali, S., Yue, T., Okariz, O., Norgren, R.: Understanding uncertainty in cyber-physical systems: a conceptual model. In: Wąsowski, A., Lönn, H. (eds.) ECMFA 2016. LNCS, vol. 9764, pp. 247–264. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-42061-5_16CrossRefGoogle Scholar
  18. 18.
    Briggs, W.: Uncertainty: The Soul of Modeling, Probability & Statistics. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-319-39756-6CrossRefzbMATHGoogle Scholar
  19. 19.
    Roy, C.J., Oberkampf, W.L.: A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing. Comput. Methods Appl. Mech. Eng. 200(25–28), 2131–2144 (2011)MathSciNetCrossRefGoogle Scholar
  20. 20.
    BIPM, IEC, IFCC, ILAC, IUPAC, IUPAP, ISO, OIML: Evaluation of measurement data-guide for the expression of uncertainty in measurement. JCGM 100: 2008Google Scholar
  21. 21.
    Thunnissen, D.P.: Uncertainty classification for the design and development of complex systems. In: Proceedings of the 3rd Annual Predictive Methods Conference, pp.1–16. Newport Beach, CA (2003)Google Scholar
  22. 22.
    Hu, Z., Mahadevan, S.: Uncertainty quantification in prediction of material properties during additive manufacturing. Scr. Mater. 135, 135–140 (2017)CrossRefGoogle Scholar
  23. 23.
    Rattadilok, P., McCall, J., Burbridge, T., Soppera, A., Eardley, P.: A data fusion framework for large-scale measurement platforms. In: Proceedings of the IEEE International Conference on Big Data, pp. 2150–2158 (2015)Google Scholar
  24. 24.
    Michaloski, J., Hedberg, T., Huang, H., Kramer, T., Michaloski, J.: End-to-end quality information framework (QIF) technology survey. US Department of Commerce, NIST (2016)Google Scholar
  25. 25.
    Abollado, J.R., Shehab, E., Rose, M., Schröter, T.: Uncertainty assessment for measurement processes in the aerospace manufacturing industry. Procedia CIRP 60, 326–331 (2017)CrossRefGoogle Scholar
  26. 26.
    Heimrich, F., Anderl, R.: Approach for the visualization of geometric uncertainty of assemblies in CAD-systems. J. Comput. 11(3), 247–257 (2016)CrossRefGoogle Scholar
  27. 27.
    ISO 10303-41:2018: Industrial automation systems and integration - Product data representation and exchange - Part 41: IGR: Fundamentals of product description and supportGoogle Scholar
  28. 28.
    ISO 10303-45:2018: Industrial automation systems and integration - Product data representation and exchange - Part 45: IGR: Material and other engineering propertiesGoogle Scholar
  29. 29.
    ISO 10303-235:2009: Industrial automation systems and integration - Product data representation and exchange - Part 235: AP: Eng. properties for product design and verificationGoogle Scholar
  30. 30.
    ISO 10303:242:2014: Industrial automation systems and integration - Product data representation and exchange - Part 242: AP: Managed model-based 3D engineeringGoogle Scholar
  31. 31.
    Trainer, A., Hedberg, T., Feeney, A.B., Fischer, K., Rosche, P.: Gaps analysis of integrating product design, manufacturing, and quality data in the supply chain using model-based definition. In: Proceedings of the 11th International Manufacturing Science and Engineering Conference, ASME (2016)Google Scholar
  32. 32.
    ISO 10303:219:2007: Industrial automation systems and integration - Product data representation and exchange - Part 219: AP: Dimensional inspection information exchangeGoogle Scholar
  33. 33.
    QIF Ver. 3.0, ANSI/DMSC QIF 3.0 2018. Digital Metrology Standards Consortium, Inc.Google Scholar
  34. 34.
    Bernstein, W.Z., Hedberg Jr., T.D., Helu, M., Feeney, A.B.: Contextualising manufacturing data for lifecycle decision-making. Int. J. Prod. Lifecycle Mgmt. 10(4), 326–347 (2018)CrossRefGoogle Scholar
  35. 35.
    Costa, P.C., Laskey, K.B., Blasch, E., Jousselme, A.L.: Towards unbiased evaluation of uncertainty reasoning: the URREF ontology. In: Proceedings of the IEEE 15th International Conference on Information Fusion (FUSION), pp. 2301–2308 (2012)Google Scholar
  36. 36.
    Cholvy, L.: Plausibility of information reported by successive sources. In: Deshpande, A., Hunter, A. (eds.) SUM 2010. LNCS (LNAI), vol. 6379, pp. 126–136. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15951-0_16CrossRefGoogle Scholar
  37. 37.
    IEC TR 62541-1:2016: OPC unified architecture - Part 1: Overview and conceptsGoogle Scholar
  38. 38.
    MTConnect Institute: MTConnect OPC UA Companion Specification, Rel. 2.0.5 (2018)Google Scholar
  39. 39.
    MTConnect Institute: MTConnect Part 2 Devices Information Model, V 1.4 (2018)Google Scholar
  40. 40.
    Weber, M., Staudter, G., Anderl, R.: Comparison of inductive inference mechanisms and their suitability for an information model for the visualization of uncertainty. Appl. Mech. Mater. 885, 147–155 (2018)CrossRefGoogle Scholar
  41. 41.
    Engelhardt, R.A., et al.: A model to categorise uncertainty in load-carrying systems. In: Proceedings of the 1st International Conference on Modelling and Management Engineering Processes, vol. 19, pp. 53–64 (2010)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  1. 1.Universidad Politécnica de MadridMadridSpain
  2. 2.TU DarmstadtDarmstadtGermany

Personalised recommendations