Advertisement

Octree Based Voxel Model for Representation of Spatial Conflicts Across Multiple Design Domains

  • Arun Kumar SinghEmail author
  • B. Gurumoorthy
  • Latha Christie
Conference paper
  • 126 Downloads
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 565)

Abstract

This paper discusses use of octree based voxel model for representation of spatial conflicts across multiple design domains. A framework has been developed to create octree based voxel model linked with intended empty spaces in product, which are associated with design requirements, product lifecycle states and connected design domains. Knowledge in System Modelling Language (SysML), is used to select criteria for building octree voxel model. A case study of Coupled cavity travelling wave tube (CCTWT) Slow Wave structure (SWS) design has been taken to showcase the code capabilities. Octree voxels inside CAD platform show and represent spatial conflicts, detected by associativity modelling of Empty space blocks inside CAD along with the Product knowledge in SysML model.

Keywords

Octrees Voxelization Spatial conflicts 

Notes

Acknowledgement

The First author is thankful to Director, Microwave Tube Research & Development Centre (MTRDC) for providing the opportunity and encouragement in carrying out the work presented in the paper.

References

  1. 1.
    Singh, A.K., Gurumoorthy, B., Christie, L.: Empty space modelling for detecting spatial conflicts across multiple design domains. In: Ríos, J., Bernard, A., Bouras, A., Foufou, S. (eds.) PLM 2017. IAICT, vol. 517, pp. 223–230. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-72905-3_20CrossRefGoogle Scholar
  2. 2.
    Singh, A.K., Gurumoorthy, B., Christie, L.: Empty space modelling using primitive shapes and associated constraints for detecting spatial conflicts across multiple design domains. In: Proceedings of the International Conference on Product Lifecycle Modelling, Synthesis & Simulations (PLMSS) (2017)Google Scholar
  3. 3.
    Kaufman, A., Cohen, D., Yagel, R.: Volume graphics. Computer 26(7), 51–64 (1993)CrossRefGoogle Scholar
  4. 4.
    Wang, S.W., Kaufman, A.E.: Volume-sampled 3D modeling. IEEE Comput. Graph. Appl. 14, 26–32 (1994)CrossRefGoogle Scholar
  5. 5.
    Kreeger, K., Kaufman, A.: Mixing translucent polygons with volumes. In: Proceedings of the Conference on Visualization 1999: Celebrating Ten Years, CA, USA (1999)Google Scholar
  6. 6.
    McNeely, W.A., Puterbaugh, K.D., Troy, J.J.: Six degree-of-freedom haptic rendering using voxel sampling. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques - SIGGRAPH 1999 (1999)Google Scholar
  7. 7.
    Westermann, R., Sommer, O., Ertl, T.: Decoupling polygon rendering from geometry using rasterization hardware. In: Lischinski, D., Larson, G.W. (eds.) Rendering Techniques 1999. Eurographics, pp. 45–56. Springer, Vienna (1999).  https://doi.org/10.1007/978-3-7091-6809-7_5CrossRefGoogle Scholar
  8. 8.
    Liao, D., Fang, S.: Fast CSG voxelization by frame buffer pixel mapping. In: 2000 IEEE Symposium on Volume Visualization (VV 2000) (2000)Google Scholar
  9. 9.
    He, T., Kaufman, A.: Collision detection for volumetric objects. In: Proceedings of the 8th Conference on Visualization 1997, Los Alamitos, CA, USA (1997)Google Scholar
  10. 10.
    Boyles, M., Fang, S.: Slicing-based volumetric collision detection. J. Graph. Tools 4, 23–32 (1999)CrossRefGoogle Scholar
  11. 11.
    Gagvani, N., Silver, D.: Shape-based volumetric collision detection. In: Proceedings of the 2000 IEEE Symposium on Volume Visualization - VVS 2000 (2000)Google Scholar
  12. 12.
    Beckhaus, S., Wind, J., Imk. Ve, F., Strothotte, T.: Hardware-based voxelization for 3D spatial analysis (2002)Google Scholar
  13. 13.
    Nourian, P., Gonçalves, R., Zlatanova, S., Ohori, K.A., Vo, A.V.: Voxelization algorithms for geospatial applications. MethodX 3, 69–86 (2016)CrossRefGoogle Scholar
  14. 14.
    Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: an efficient probabilistic 3D mapping framework based on octrees. Auton. Robot. 34, 189–206 (2013)CrossRefGoogle Scholar
  15. 15.
    OMG systems modelling language specifications (2015). www.omg.org/spec/SysML/1.4/

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  • Arun Kumar Singh
    • 1
    • 2
    Email author
  • B. Gurumoorthy
    • 2
  • Latha Christie
    • 1
  1. 1.Microwave Tube Research and Development Centre (DRDO)BangaloreIndia
  2. 2.Centre for Product Design and ManufacturingIndian Institute of ScienceBangaloreIndia

Personalised recommendations