Adhesion and the Cytoskeleton in the Drosophila Pupal Eye
Chapter
First Online:
- 1 Citations
- 113 Downloads
Abstract
During pupal development, the Drosophila eye becomes patterned with exquisite precision. The adhesive junctions and cytoskeletal structures that contribute to this morphogenesis are the focus of this chapter: these structures must be correctly regulated and organized in order to permit or drive local cell movements and cell shape changes during eye patterning. However, our understanding of how the cytoskeleton and adhesion are modified in the pupal eye is currently quite poor. This chapter discusses what we currently do know and presents many hypotheses on the topic, in the context of the morphogenesis of the cone and pigment cells.
Keywords
Cadherin Adherens junction Zonula adherens Actin Myosin Irre cell recognition module proteins Cindr Polychaetoid Arf6 Rho family GTPasesReferences
- Aberle H, Butz S, Stappert J, Weissig H, Kemler R, Hoschuetzky H (1994) Assembly of the cadherin-catenin complex in vitro with recombinant proteins. J Cell Sci 107(Pt 12):3655–3663PubMedGoogle Scholar
- Acharya BR, Wu SK, Lieu ZZ, Parton RG, Grill SW, Bershadsky AD, Gomez GA, Yap AS (2017) Mammalian diaphanous 1 mediates a pathway for E-cadherin to stabilize epithelial barriers through junctional contractility. Cell Rep 18:2854–2867PubMedCrossRefGoogle Scholar
- Agi E, Langen M, Altschuler SJ, Wu LF, Zimmermann T, Hiesinger PR (2014) The evolution and development of neural superposition. J Neurogenet 28:216–232PubMedPubMedCentralCrossRefGoogle Scholar
- Aigouy B, Le Bivic A (2016) The PCP pathway regulates Baz planar distribution in epithelial cells. Sci Rep 6:33420PubMedPubMedCentralCrossRefGoogle Scholar
- Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, Walter P (2015) Molecular biology of the cell, 6th ed (Garland Science)Google Scholar
- Anderson JM, Van Itallie CM (2009) Physiology and function of the tight junction. Cold Spring Harb Perspect Biol 1:a002584PubMedPubMedCentralCrossRefGoogle Scholar
- Bao S (2014) Notch controls cell adhesion in the Drosophila eye. PLoS Genet 10:e1004087PubMedPubMedCentralCrossRefGoogle Scholar
- Bao S, Cagan R (2005) Preferential adhesion mediated by Hibris and Roughest regulates morphogenesis and patterning in the Drosophila eye. Dev Cell 8:925–935PubMedCrossRefGoogle Scholar
- Bao S, Fischbach KF, Corbin V, Cagan RL (2010) Preferential adhesion maintains separation of ommatidia in the Drosophila eye. Dev Biol 344:948–956PubMedPubMedCentralCrossRefGoogle Scholar
- Bardet PL, Guirao B, Paoletti C, Serman F, Leopold V, Bosveld F, Goya Y, Mirouse V, Graner F, Bellaiche Y (2013) PTEN controls junction lengthening and stability during cell rearrangement in epithelial tissue. Dev Cell 25:534–546PubMedCrossRefGoogle Scholar
- Baum B, Georgiou M (2011) Dynamics of adherens junctions in epithelial establishment, maintenance, and remodeling. J Cell Biol 192:907–917PubMedPubMedCentralCrossRefGoogle Scholar
- Bertet C, Sulak L, Lecuit T (2004) Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature 429:667–671PubMedCrossRefGoogle Scholar
- Bertocchi C, Wang Y, Ravasio A, Hara Y, Wu Y, Sailov T, Baird MA, Davidson MW, Zaidel-Bar R, Toyama Y et al (2017) Nanoscale architecture of cadherin-based cell adhesions. Nat Cell Biol 19:28–37PubMedCrossRefGoogle Scholar
- Blankenship JT, Backovic ST, Sanny JS, Weitz O, Zallen JA (2006) Multicellular rosette formation links planar cell polarity to tissue morphogenesis. Dev Cell 11:459–470PubMedCrossRefGoogle Scholar
- Brindle NP, Holt MR, Davies JE, Price CJ, Critchley DR (1996) The focal-adhesion vasodilator-stimulated phosphoprotein (VASP) binds to the proline-rich domain in vinculin. Biochem J 318(Pt 3):753–757PubMedPubMedCentralCrossRefGoogle Scholar
- Bruck S, Huber TB, Ingham RJ, Kim K, Niederstrasser H, Allen PM, Pawson T, Cooper JA, Shaw AS (2006) Identification of a novel inhibitory actin-capping protein binding motif in CD2-associated protein. J Biol Chem 281:19196–19203PubMedPubMedCentralCrossRefGoogle Scholar
- Bruinsma SP, Cagan RL, Baranski TJ (2007) Chimaerin and Rac regulate cell number, adherens junctions, and ERK MAP kinase signaling in the Drosophila eye. Proc Natl Acad Sci USA 104:7098–7103PubMedCrossRefGoogle Scholar
- Bulgakova NA, Klapholz B, Brown NH (2012) Cell adhesion in Drosophila: versatility of cadherin and integrin complexes during development. Curr Opin Cell Biol 24:702–712PubMedCrossRefGoogle Scholar
- Bushnell HL, Feiler CE, Ketosugbo KF, Hellerman MB, Nazzaro VL, Johnson RI (2018) JNK is antagonized to ensure the correct number of interommatidial cells pattern the Drosophila retina. Dev Biol 433:94–107PubMedCrossRefGoogle Scholar
- Cagan RL, Ready DF (1989a) The emergence of order in the Drosophila pupal retina. Dev Biol 136:346–362PubMedCrossRefGoogle Scholar
- Cagan RL, Ready DF (1989b) Notch is required for successive cell decisions in the developing Drosophila retina. Genes Dev 3:1099–1112CrossRefPubMedGoogle Scholar
- Cavey M, Lecuit T (2009) Molecular bases of cell-cell junctions stability and dynamics. Cold Spring Harb Perspect Biol 1:a002998PubMedPubMedCentralCrossRefGoogle Scholar
- Chan EH, Chavadimane Shivakumar P, Clement R, Laugier E, Lenne PF (2017) Patterned cortical tension mediated by N-cadherin controls cell geometric order in the Drosophila eye. elife 6:e22796PubMedPubMedCentralCrossRefGoogle Scholar
- Charlton-Perkins M, Cook TA (2010) Building a fly eye: terminal differentiation events of the retina, corneal lens, and pigmented epithelia. Curr Top Dev Biol 93:129–173PubMedPubMedCentralCrossRefGoogle Scholar
- Charlton-Perkins M, Brown NL, Cook TA (2011) The lens in focus: a comparison of lens development in Drosophila and vertebrates. Mol Gen Genomics 286:189–213CrossRefGoogle Scholar
- Charras G, Yap AS (2018) Tensile forces and mechanotransduction at cell-cell junctions. Curr Biol 28:R445–R457PubMedCrossRefGoogle Scholar
- Choi HJ, Pokutta S, Cadwell GW, Bobkov AA, Bankston LA, Liddington RC, Weis WI (2012) alphaE-catenin is an autoinhibited molecule that coactivates vinculin. Proc Natl Acad Sci USA 109:8576–8581PubMedCrossRefGoogle Scholar
- Choi W, Acharya BR, Peyret G, Fardin MA, Mege RM, Ladoux B, Yap AS, Fanning AS, Peifer M (2016) Remodeling the zonula adherens in response to tension and the role of afadin in this response. J Cell Biol 213:243–260PubMedPubMedCentralCrossRefGoogle Scholar
- Citi S, Guerrera D, Spadaro D, Shah J (2014) Epithelial junctions and Rho family GTPases: the zonular signalosome. Small GTPases 5:1–15PubMedCrossRefGoogle Scholar
- Collinet C, Rauzi M, Lenne PF, Lecuit T (2015) Local and tissue-scale forces drive oriented junction growth during tissue extension. Nat Cell Biol 17:1247–1258PubMedCrossRefGoogle Scholar
- Cordero J, Jassim O, Bao S, Cagan R (2004) A role for wingless in an early pupal cell death event that contributes to patterning the Drosophila eye. Mech Dev 121:1523–1530PubMedCrossRefGoogle Scholar
- D’Souza-Schorey C, Chavrier P (2006) ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 7:347–358PubMedCrossRefGoogle Scholar
- de Nooij JC, Hariharan IK (1995) Uncoupling cell fate determination from patterned cell division in the Drosophila eye. Science 270:983–985PubMedCrossRefGoogle Scholar
- Del Signore SJ, Cilla R, Hatini V (2018) The WAVE regulatory complex and branched F-actin counterbalance contractile force to control cell shape and packing in the Drosophila eye. Dev Cell 44(471-483):e474Google Scholar
- DeMali KA, Barlow CA, Burridge K (2002) Recruitment of the Arp2/3 complex to vinculin: coupling membrane protrusion to matrix adhesion. J Cell Biol 159:881–891PubMedPubMedCentralCrossRefGoogle Scholar
- Fanning AS, Van Itallie CM, Anderson JM (2012) Zonula occludens-1 and -2 regulate apical cell structure and the zonula adherens cytoskeleton in polarized epithelia. Mol Biol Cell 23:577–590PubMedPubMedCentralCrossRefGoogle Scholar
- Fischbach KF, Linneweber GA, Andlauer TF, Hertenstein A, Bonengel B, Chaudhary K (2009) The irre cell recognition module (IRM) proteins. J Neurogenet 23:48–67PubMedCrossRefGoogle Scholar
- Foty RA, Steinberg MS (2005) The differential adhesion hypothesis: a direct evaluation. Dev Biol 278:255–263PubMedCrossRefGoogle Scholar
- Furuse M, Tsukita S (2006) Claudins in occluding junctions of humans and flies. Trends Cell Biol 16:181–188PubMedCrossRefGoogle Scholar
- Gemp IM, Carthew RW, Hilgenfeldt S (2011) Cadherin-dependent cell morphology in an epithelium: constructing a quantitative dynamical model. PLoS Comput Biol 7:e1002115PubMedPubMedCentralCrossRefGoogle Scholar
- Grikscheit K, Frank T, Wang Y, Grosse R (2015) Junctional actin assembly is mediated by Formin-like 2 downstream of Rac1. J Cell Biol 209:367–376PubMedPubMedCentralCrossRefGoogle Scholar
- Grillo-Hill BK, Wolff T (2009) Dynamic cell shapes and contacts in the developing Drosophila retina are regulated by the Ig cell adhesion protein hibris. Dev Dyn 238:2223–2234PubMedCrossRefGoogle Scholar
- Grzeschik NA, Knust E (2005) IrreC/rst-mediated cell sorting during Drosophila pupal eye development depends on proper localisation of DE-cadherin. Development 132:2035–2045PubMedCrossRefGoogle Scholar
- Hakeda-Suzuki S, Suzuki T (2014) Cell surface control of the layer specific targeting in the Drosophila visual system. Genes Genet Syst 89:9–15PubMedCrossRefGoogle Scholar
- Hall A (2005) Rho GTPases and the control of cell behaviour. Biochem Soc Trans 33:891–895PubMedCrossRefGoogle Scholar
- Harris TJC (2018) Sculpting epithelia with planar polarized actomyosin networks: Principles from Drosophila. Semin Cell Dev Biol 81:54–61PubMedCrossRefGoogle Scholar
- Hayashi T, Carthew RW (2004) Surface mechanics mediate pattern formation in the developing retina. Nature 431:647–652PubMedCrossRefGoogle Scholar
- Heer NC, Martin AC (2017) Tension, contraction and tissue morphogenesis. Development 144:4249–4260PubMedPubMedCentralCrossRefGoogle Scholar
- Hellerman MB, Choe RH, Johnson RI (2015) Live-imaging of the Drosophila pupal eye. J Vis Exp 95:52120Google Scholar
- Hilgenfeldt S, Erisken S, Carthew RW (2008) Physical modeling of cell geometric order in an epithelial tissue. Proc Natl Acad Sci USA 105:907–911PubMedCrossRefGoogle Scholar
- Hohne M, Lorscheider J, von Bardeleben A, Dufner M, Scharf MA, Godel M, Helmstadter M, Schurek EM, Zank S, Gerke P et al (2011) The BAR domain protein PICK1 regulates cell recognition and morphogenesis by interacting with Neph proteins. Mol Cell Biol 31:3241–3251PubMedPubMedCentralCrossRefGoogle Scholar
- Hu B, Shi B, Jarzynka MJ, Yiin JJ, D’Souza-Schorey C, Cheng SY (2009) ADP-ribosylation factor 6 regulates glioma cell invasion through the IQ-domain GTPase-activating protein 1-Rac1-mediated pathway. Cancer Res 69:794–801PubMedPubMedCentralCrossRefGoogle Scholar
- Huber AH, Weis WI (2001) The structure of the beta-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by beta-catenin. Cell 105:391–402PubMedCrossRefGoogle Scholar
- Huber AH, Stewart DB, Laurents DV, Nelson WJ, Weis WI (2001) The cadherin cytoplasmic domain is unstructured in the absence of beta-catenin. A possible mechanism for regulating cadherin turnover. J Biol Chem 276:12301–12309PubMedCrossRefGoogle Scholar
- Humphreys D, Davidson AC, Hume PJ, Makin LE, Koronakis V (2013) Arf6 coordinates actin assembly through the WAVE complex, a mechanism usurped by Salmonella to invade host cells. Proc Natl Acad Sci USA 110:16880–16885PubMedCrossRefGoogle Scholar
- Ishiyama N, Ikura M (2012) The three-dimensional structure of the cadherin-catenin complex. Subcell Biochem 60:39–62PubMedCrossRefGoogle Scholar
- Ishiyama N, Lee SH, Liu S, Li GY, Smith MJ, Reichardt LF, Ikura M (2010) Dynamic and static interactions between p120 catenin and E-cadherin regulate the stability of cell-cell adhesion. Cell 141:117–128PubMedCrossRefGoogle Scholar
- Johnson RI, Seppa MJ, Cagan RL (2008) The Drosophila CD2AP/CIN85 orthologue Cindr regulates junctions and cytoskeleton dynamics during tissue patterning. J Cell Biol 180:1191–1204PubMedPubMedCentralCrossRefGoogle Scholar
- Johnson RI, Sedgwick A, D’Souza-Schorey C, Cagan RL (2011) Role for a Cindr-Arf6 axis in patterning emerging epithelia. Mol Biol Cell 22:4513–4526PubMedPubMedCentralCrossRefGoogle Scholar
- Johnson RI, Bao S, Cagan RL (2012) Interactions between Drosophila IgCAM adhesion receptors and cindr, the Cd2ap/Cin85 ortholog. Dev Dyn 241:1933–1943PubMedPubMedCentralCrossRefGoogle Scholar
- Kafer J, Hayashi T, Maree AF, Carthew RW, Graner F (2007) Cell adhesion and cortex contractility determine cell patterning in the Drosophila retina. Proc Natl Acad Sci USA 104:18549–18554PubMedCrossRefGoogle Scholar
- Kasza KE, Farrell DL, Zallen JA (2014) Spatiotemporal control of epithelial remodeling by regulated myosin phosphorylation. Proc Natl Acad Sci USA 111:11732–11737PubMedCrossRefGoogle Scholar
- Kim TJ, Zheng S, Sun J, Muhamed I, Wu J, Lei L, Kong X, Leckband DE, Wang Y (2015) Dynamic visualization of alpha-catenin reveals rapid, reversible conformation switching between tension states. Curr Biol 25:218–224PubMedCrossRefGoogle Scholar
- Knust E (2007) Photoreceptor morphogenesis and retinal degeneration: lessons from Drosophila. Curr Opin Neurobiol 17:541–547PubMedCrossRefGoogle Scholar
- Kobielak A, Pasolli HA, Fuchs E (2004) Mammalian formin-1 participates in adherens junctions and polymerization of linear actin cables. Nat Cell Biol 6:21–30PubMedCrossRefGoogle Scholar
- Koo TH, Eipper BA, Donaldson JG (2007) Arf6 recruits the Rac GEF Kalirin to the plasma membrane facilitating Rac activation. BMC Cell Biol 8:29PubMedPubMedCentralCrossRefGoogle Scholar
- Kovacs EM, Goodwin M, Ali RG, Paterson AD, Yap AS (2002) Cadherin-directed actin assembly: E-cadherin physically associates with the Arp2/3 complex to direct actin assembly in nascent adhesive contacts. Curr Biol 12:379–382PubMedCrossRefGoogle Scholar
- Kowalczyk AP, Nanes BA (2012) Adherens junction turnover: regulating adhesion through cadherin endocytosis, degradation, and recycling. Subcell Biochem 60:197–222PubMedPubMedCentralCrossRefGoogle Scholar
- Krejci A, Bernard F, Housden BE, Collins S, Bray SJ (2009) Direct response to Notch activation: signaling crosstalk and incoherent logic. Sci Signal 2:ra1PubMedCrossRefGoogle Scholar
- Kumar JP (2012) Building an ommatidium one cell at a time. Dev Dyn 241:136–149PubMedPubMedCentralCrossRefGoogle Scholar
- Larson DE, Liberman Z, Cagan RL (2008) Cellular behavior in the developing Drosophila pupal retina. Mech Dev 125:223–232PubMedCrossRefGoogle Scholar
- Larson DE, Johnson RI, Swat M, Cordero JB, Glazier JA, Cagan RL (2010) Computer simulation of cellular patterning within the Drosophila pupal eye. PLoS Comput Biol 6:e1000841PubMedPubMedCentralCrossRefGoogle Scholar
- Lee HG, Zarnescu DC, MacIver B, Thomas GH (2010) The cell adhesion molecule Roughest depends on beta(Heavy)-spectrin during eye morphogenesis in Drosophila. J Cell Sci 123:277–285PubMedCrossRefGoogle Scholar
- Leerberg JM, Gomez GA, Verma S, Moussa EJ, Wu SK, Priya R, Hoffman BD, Grashoff C, Schwartz MA, Yap AS (2014) Tension-sensitive actin assembly supports contractility at the epithelial zonula adherens. Curr Biol 24:1689–1699PubMedPubMedCentralCrossRefGoogle Scholar
- Levayer R, Lecuit T (2013) Oscillation and polarity of E-cadherin asymmetries control actomyosin flow patterns during morphogenesis. Dev Cell 26:162–175PubMedCrossRefGoogle Scholar
- Liu Z, Tan JL, Cohen DM, Yang MT, Sniadecki NJ, Ruiz SA, Nelson CM, Chen CS (2010) Mechanical tugging force regulates the size of cell-cell junctions. Proc Natl Acad Sci USA 107:9944–9949PubMedCrossRefGoogle Scholar
- Longley RL Jr, Ready DF (1995) Integrins and the development of three-dimensional structure in the Drosophila compound eye. Dev Biol 171:415–433PubMedCrossRefGoogle Scholar
- Maitre JL, Berthoumieux H, Krens SF, Salbreux G, Julicher F, Paluch E, Heisenberg CP (2012) Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells. Science 338:253–256PubMedCrossRefGoogle Scholar
- Mao Y, Baum B (2015) Tug of war – the influence of opposing physical forces on epithelial cell morphology. Dev Biol 401:92–102PubMedCrossRefGoogle Scholar
- McCrea PD, Gumbiner BM (1991) Purification of a 92-kDa cytoplasmic protein tightly associated with the cell-cell adhesion molecule E-cadherin (uvomorulin). Characterization and extractability of the protein complex from the cell cytostructure. J Biol Chem 266:4514–4520PubMedGoogle Scholar
- McCrea PD, Turck CW, Gumbiner B (1991) A homolog of the armadillo protein in Drosophila (plakoglobin) associated with E-cadherin. Science 254:1359–1361PubMedCrossRefGoogle Scholar
- Miller DT, Cagan RL (1998) Local induction of patterning and programmed cell death in the developing Drosophila retina. Development 125:2327–2335PubMedGoogle Scholar
- Mirkovic I, Mlodzik M (2006) Cooperative activities of drosophila DE-cadherin and DN-cadherin regulate the cell motility process of ommatidial rotation. Development 133:3283–3293PubMedCrossRefGoogle Scholar
- Monserrate JP, Brachmann CB (2007) Identification of the death zone: a spatially restricted region for programmed cell death that sculpts the fly eye. Cell Death Differ 14:209–217PubMedCrossRefGoogle Scholar
- Muller HA (2000) Genetic control of epithelial cell polarity: lessons from Drosophila. Dev Dyn 218:52–67PubMedCrossRefGoogle Scholar
- Nagaraj R, Banerjee U (2007) Combinatorial signaling in the specification of primary pigment cells in the Drosophila eye. Development 134:825–831PubMedCrossRefGoogle Scholar
- Nern A, Nguyen LV, Herman T, Prakash S, Clandinin TR, Zipursky SL (2005) An isoform-specific allele of Drosophila N-cadherin disrupts a late step of R7 targeting. Proc Natl Acad Sci USA 102:12944–12949PubMedCrossRefGoogle Scholar
- Nose A, Tsuji K, Takeichi M (1990) Localization of specificity determining sites in cadherin cell adhesion molecules. Cell 61:147–155PubMedCrossRefGoogle Scholar
- Ozawa M, Ringwald M, Kemler R (1990) Uvomorulin-catenin complex formation is regulated by a specific domain in the cytoplasmic region of the cell adhesion molecule. Proc Natl Acad Sci USA 87:4246–4250PubMedCrossRefGoogle Scholar
- Pichaud F (2014) Transcriptional regulation of tissue organization and cell morphogenesis: the fly retina as a case study. Dev Biol 385:168–178PubMedCrossRefGoogle Scholar
- Pinheiro D, Bellaiche Y (2018) Mechanical force-driven adherens junction remodeling and epithelial dynamics. Dev Cell 47:3–19PubMedCrossRefGoogle Scholar
- Pollitt AY, Insall RH (2009) WASP and SCAR/WAVE proteins: the drivers of actin assembly. J Cell Sci 122:2575–2578PubMedPubMedCentralCrossRefGoogle Scholar
- Rao MV, Zaidel-Bar R (2016) Formin-mediated actin polymerization at cell-cell junctions stabilizes E-cadherin and maintains monolayer integrity during wound repair. Mol Biol Cell 27:2844–2856PubMedPubMedCentralCrossRefGoogle Scholar
- Rauzi M, Lenne PF, Lecuit T (2010) Planar polarized actomyosin contractile flows control epithelial junction remodelling. Nature 468:1110–1114PubMedCrossRefGoogle Scholar
- Ready DF, Hanson TE, Benzer S (1976) Development of the Drosophila retina, a neurocrystalline lattice. Dev Biol 53:217–240CrossRefPubMedGoogle Scholar
- Reiter C, Schimansky T, Nie Z, Fischbach KF (1996) Reorganization of membrane contacts prior to apoptosis in the Drosophila retina: the role of the IrreC-rst protein. Development 122:1931–1940PubMedGoogle Scholar
- Rimm DL, Koslov ER, Kebriaei P, Cianci CD, Morrow JS (1995) Alpha 1(E)-catenin is an actin-binding and -bundling protein mediating the attachment of F-actin to the membrane adhesion complex. Proc Natl Acad Sci USA 92:8813–8817PubMedCrossRefGoogle Scholar
- Roper K (2015) Integration of cell-cell adhesion and contractile actomyosin activity during morphogenesis. Curr Top Dev Biol 112:103–127PubMedCrossRefGoogle Scholar
- Scott JA, Shewan AM, den Elzen NR, Loureiro JJ, Gertler FB, Yap AS (2006) Ena/VASP proteins can regulate distinct modes of actin organization at cadherin-adhesive contacts. Mol Biol Cell 17:1085–1095PubMedPubMedCentralCrossRefGoogle Scholar
- Seppa MJ, Johnson RI, Bao S, Cagan RL (2008) Polychaetoid controls patterning by modulating adhesion in the Drosophila pupal retina. Dev Biol 318:1–16PubMedPubMedCentralCrossRefGoogle Scholar
- Shapiro L, Weis WI (2009) Structure and biochemistry of cadherins and catenins. Cold Spring Harb Perspect Biol 1:a003053PubMedPubMedCentralCrossRefGoogle Scholar
- Shoup JR (1966) The development of pigment granules in the eyes of wild type and mutant Drosophila melanogaster. J Cell Biol 29:223–249PubMedPubMedCentralCrossRefGoogle Scholar
- Simoes Sde M, Blankenship JT, Weitz O, Farrell DL, Tamada M, Fernandez-Gonzalez R, Zallen JA (2010) Rho-kinase directs Bazooka/Par-3 planar polarity during Drosophila axis elongation. Dev Cell 19:377–388PubMedCrossRefGoogle Scholar
- Simoes Sde M, Mainieri A, Zallen JA (2014) Rho GTPase and Shroom direct planar polarized actomyosin contractility during convergent extension. J Cell Biol 204:575–589PubMedCrossRefGoogle Scholar
- Steinberg MS (1963) Reconstruction of tissues by dissociated cells. Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation. Science 141:401–408PubMedCrossRefPubMedCentralGoogle Scholar
- Takeichi M (2014) Dynamic contacts: rearranging adherens junctions to drive epithelial remodelling. Nat Rev Mol Cell Biol 15:397–410PubMedCrossRefGoogle Scholar
- Tamada M, Farrell DL, Zallen JA (2012) Abl regulates planar polarized junctional dynamics through beta-catenin tyrosine phosphorylation. Dev Cell 22:309–319PubMedPubMedCentralCrossRefGoogle Scholar
- Tanenbaum SB, Gorski SM, Rusconi JC, Cagan RL (2000) A screen for dominant modifiers of the irreC-rst cell death phenotype in the developing Drosophila retina. Genetics 156:205–217PubMedPubMedCentralGoogle Scholar
- Tang VW, Brieher WM (2012) alpha-Actinin-4/FSGS1 is required for Arp2/3-dependent actin assembly at the adherens junction. J Cell Biol 196:115–130PubMedPubMedCentralCrossRefGoogle Scholar
- Tepass U, Harris KP (2007) Adherens junctions in Drosophila retinal morphogenesis. Trends Cell Biol 17:26–35PubMedCrossRefGoogle Scholar
- Tepass U, Tanentzapf G, Ward R, Fehon R (2001) Epithelial cell polarity and cell junctions in Drosophila. Annu Rev Genet 35:747–784PubMedCrossRefGoogle Scholar
- Thomas WA, Boscher C, Chu YS, Cuvelier D, Martinez-Rico C, Seddiki R, Heysch J, Ladoux B, Thiery JP, Mege RM et al (2013) alpha-Catenin and vinculin cooperate to promote high E-cadherin-based adhesion strength. J Biol Chem 288:4957–4969PubMedCrossRefGoogle Scholar
- Thoreson MA, Anastasiadis PZ, Daniel JM, Ireton RC, Wheelock MJ, Johnson KR, Hummingbird DK, Reynolds AB (2000) Selective uncoupling of p120(ctn) from E-cadherin disrupts strong adhesion. J Cell Biol 148:189–202PubMedPubMedCentralCrossRefGoogle Scholar
- Tomlinson A (1988) Cellular interactions in the developing Drosophila eye. Development 104:183–193PubMedGoogle Scholar
- Tomlinson A, Ready DF (1987a) Cell fate in the Drosophila ommatidium. Dev Biol 123:264–275PubMedCrossRefGoogle Scholar
- Tomlinson A, Ready DF (1987b) Neuronal differentiation in Drosophila ommatidium. Dev Biol 120:366–376CrossRefPubMedGoogle Scholar
- Tomschy A, Fauser C, Landwehr R, Engel J (1996) Homophilic adhesion of E-cadherin occurs by a co-operative two-step interaction of N-terminal domains. EMBO J 15:3507–3514PubMedPubMedCentralCrossRefGoogle Scholar
- Troyanovsky S (2012) Adherens junction assembly. Subcell Biochem 60:89–108PubMedPubMedCentralCrossRefGoogle Scholar
- Valenta T, Hausmann G, Basler K (2012) The many faces and functions of beta-catenin. EMBO J 31:2714–2736PubMedPubMedCentralCrossRefGoogle Scholar
- Waddington CH, Perry MM (1960) The ultra-structure of the developing eye of Drosophila. Proc R Soc Lond 153(B):155–178Google Scholar
- Warner SJ, Longmore GD (2009a) Cdc42 antagonizes Rho1 activity at adherens junctions to limit epithelial cell apical tension. J Cell Biol 187:119–133PubMedPubMedCentralCrossRefGoogle Scholar
- Warner SJ, Longmore GD (2009b) Distinct functions for Rho1 in maintaining adherens junctions and apical tension in remodeling epithelia. J Cell Biol 185:1111–1125PubMedPubMedCentralCrossRefGoogle Scholar
- Warrington SJ, Strutt H, Strutt D (2013) The Frizzled-dependent planar polarity pathway locally promotes E-cadherin turnover via recruitment of RhoGEF2. Development 140:1045–1054PubMedPubMedCentralCrossRefGoogle Scholar
- Wehrle-Haller B (2012) Assembly and disassembly of cell matrix adhesions. Curr Opin Cell Biol 24:569–581PubMedCrossRefGoogle Scholar
- Wolff T, Ready DF (1991a) The beginning of pattern formation in the Drosophila compound eye: the morphogenetic furrow and the second mitotic wave. Development 113:841–850PubMedGoogle Scholar
- Wolff T, Ready DF (1991b) Cell death in normal and rough eye mutants of Drosophila. Development 113:825–839PubMedGoogle Scholar
- Wolff T, Ready DF (1993) Pattern formation in the Drosophila retina. In: Bate M, Arias AM (eds) The development of Drosophila melanogaster. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 1277–1325Google Scholar
- Yao M, Qiu W, Liu R, Efremov AK, Cong P, Seddiki R, Payre M, Lim CT, Ladoux B, Mege RM et al (2014) Force-dependent conformational switch of alpha-catenin controls vinculin binding. Nat Commun 5:4525PubMedCrossRefGoogle Scholar
- Yashiro H, Loza AJ, Skeath JB, Longmore GD (2014) Rho1 regulates adherens junction remodeling by promoting recycling endosome formation through activation of myosin II. Mol Biol Cell 25:2956–2969PubMedPubMedCentralCrossRefGoogle Scholar
- Yonemura S, Wada Y, Watanabe T, Nagafuchi A, Shibata M (2010) alpha-Catenin as a tension transducer that induces adherens junction development. Nat Cell Biol 12:533–542PubMedCrossRefGoogle Scholar
- Yu JC, Fernandez-Gonzalez R (2016) Local mechanical forces promote polarized junctional assembly and axis elongation in Drosophila. elife 5:e10757PubMedPubMedCentralCrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2020