Advertisement

Customer Oriented Product Design and Intelligence

  • Selcuk CebiEmail author
  • Cengiz Kahraman
Chapter
  • 14 Downloads
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 279)

Abstract

The aim of customer oriented product design is to develop products on the basis of an understanding of customers’ expectations and requirements. Customer orientation is based on both the experiences of users and customers. This is a crucial issue for the product to be accepted in the market by customers. The main steps of customer oriented product design consist of data collection, definition of customer expectations, integration of customer requirements to design characteristics, implementation of the design and production of the prototype. Under vague and imprecise environment, definition of customer expectations and integration of customer requirements to design characteristics require fuzzy and intelligent techniques to be employed. In this chapter, we summarize data collection methods for product design and fuzzy and intelligent design approaches.

References

  1. 1.
    Matzler, K., Hinterhuber, H.-H., Bailom, F., Sauerwein, E.: How to delight your customers. J. Prod. Brand. Manag. 5(2), 6–18 (1996)CrossRefGoogle Scholar
  2. 2.
    Lager, T.: The industrial usability of quality function deployment: a literature review and synthesis on a meta-level. R&D Manag. 35(4), 409–426 (2005)CrossRefGoogle Scholar
  3. 3.
    Ulrich, K., Eppinger, S.: Product Design and Development, 5th edn. Mcgraw Hill International edition (2012)Google Scholar
  4. 4.
    Lin, M.-C., Wang, C.-C., Chen, T.-C.: A strategy for managing customer-oriented product design. Concurr. Eng. 14(3), 231–244 (2006)CrossRefGoogle Scholar
  5. 5.
    Gill, P., Stewart, K., Treasure, E., Chadwick, B.: Methods of data collection in qualitative research: interviews and focus groups. Br. Dent. J. 204, 291–295 (2008).  https://doi.org/10.1038/bdj.2008.192CrossRefGoogle Scholar
  6. 6.
    McGrath, C., Palmgren, P.J., Liljedahl, M.: Twelve tips for conducting qualitative research interviews. Med. Teach. 41(9), 1002–1006 (2019).  https://doi.org/10.1080/0142159X.2018.1497149CrossRefGoogle Scholar
  7. 7.
    Breen, Rosanna L.: A practical guide to focus-group research. J. Geogr. High. Educ. 30(3), 463–475 (2006).  https://doi.org/10.1080/03098260600927575CrossRefGoogle Scholar
  8. 8.
    Karen, L., James, A., Ellena, A.: Focus group research: what is it and how can it be used? Can. J. Cardiovasc. Nurs. 24(1), 16–22 (2014)Google Scholar
  9. 9.
    Nielsen, J.: Heuristic evaluation. Usability Inspection Methods, pp. 25–62. Wiley (1994)Google Scholar
  10. 10.
    Randolph, G.: Use-cases and personas: a case study in light-weight user interaction design for small development projects. Informing Sci. Int. J. Emerg. Transdiscipl. 7, 105–116 (2004)CrossRefGoogle Scholar
  11. 11.
    Zimmermann, G., Vanderheiden, G.: Accessible design and testing in the application development process: considerations for an integrated approach. Univ. Access Inf. Soc. 7(1–2), 117–128 (2008)CrossRefGoogle Scholar
  12. 12.
    Kjeldskov, J., Stage, J.: New techniques for usability evaluation of mobile systems. Int. J. Hum. Comput. Stud. 60(5–6), 599–620 (2004)CrossRefGoogle Scholar
  13. 13.
    Akao, Y.: In: Mazur, G.H. (trans) Quality Function Deployment: Integrating Customer Requirements into Product Design. Cambridge, Productivity Press, MA (1990)Google Scholar
  14. 14.
    Suh, N.P.: The Principles of Design. Oxford Series on Advanced Manufacturing (1990)Google Scholar
  15. 15.
    Suh, H.P.: Axiomatic Design: Advances and Applications MIT-Pappalardo Series in Mechanical Engineering. Oxford University Press, USA (2001)Google Scholar
  16. 16.
    Kano, N.: Attractive quality and must-be quality. Hinshitsu Qual. J. Jpn. Soc. Qual. Control 14, 39–48 (1984)Google Scholar
  17. 17.
    Mikulić, J., Prebežac, D.: A critical review of techniques for classifying quality attributes in the Kano model. Manag. Serv. Qual. Int. J. 21(1), 46–66 (2011)CrossRefGoogle Scholar
  18. 18.
    Green, P., Rao, V.: Conjoint measurement for quantifying judgmental data. J. Mark. Res. 8(3), 355–363 (1971).  https://doi.org/10.2307/3149575CrossRefGoogle Scholar
  19. 19.
    Nagamachi, M.: Kansei Engineering: a new ergonomic consumer-oriented technology for product development. Int. J. Ind. Ergon. 15, 3–11 (1995)CrossRefGoogle Scholar
  20. 20.
    Nagamachi, M.: Kansei Engineering as a powerful consumer-oriented technology for product development. Appl. Ergon. 33, 273–278 (2002)CrossRefGoogle Scholar
  21. 21.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)zbMATHCrossRefGoogle Scholar
  22. 22.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 8(3), 199–249 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Sambuc, R.: Fonctions φ-floues: application a l’aide au diagnostic en pathologie thyroidienne. Ph.D. Thesis, University of Marseille, France (1975)Google Scholar
  24. 24.
    Grattan-Guiness, I.: Fuzzy membership mapped onto interval and many-valued quantities. Z. Math. Logik. Grundladen, Math. 22, 149–160 (1975)Google Scholar
  25. 25.
    Jahn, K.U.: Intervall-wertige Mengen. Math. Nach. 68, 115–132 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Yager, R.R.: On the theory of bags. Int. J. Gen. Syst. 13(1), 23–37 (1986).  https://doi.org/10.1080/03081078608934952MathSciNetCrossRefGoogle Scholar
  27. 27.
    Miyamoto, S.: Fuzzy multisets and their generalizations. In: Calude, C.S., Pǎun, G., Rozenberg, G., Salomaa, A. (eds.) Multiset Processing. Lecture Notes in Computer Science, WMC 2000, pp. 225–235. Springer, Berlin, Heidelberg (2000)Google Scholar
  28. 28.
    Riesgo, Á., Alonso, P., Díaz, I., Montes, S.: Basic operations for fuzzy multisets. Int. J. Approx. Reason. 101, 107–118 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)zbMATHCrossRefGoogle Scholar
  30. 30.
    Smarandache, F.: Neutrosophy: Neutrosophic Probability, Set, and Logic: Analytic Synthesis & Synthetic Analysis. American Research Press (1998). ISBN-10: 1879585634Google Scholar
  31. 31.
    Smarandache, F.: Neutrosophy, a new branch of philosophy. Mult. Valued Log. 8(3), 297–384 (2002)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Smarandache, F.: Neutrosophic set—a generalization of the intuitionistic fuzzy set. Int. J. Pure Appl. Math. 24(3), 287–297 (2005)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Ozen, T., Garibaldi, J.M., Musikasuwan, S.: Preliminary investigations into modelling the variation in human decision making. Uncertainty in Knowledge Based System in Perugia, Italy, July 2004Google Scholar
  34. 34.
    Garibaldi, J.M., Ozen, T.: Uncertain fuzzy reasoning: a case study in modelling expert decision making. IEEE Trans. Fuzzy Syst. 15(1), 16–30 (2007)CrossRefGoogle Scholar
  35. 35.
    Garibaldi, J.M., Jaroszewski, M., Musikasuwan, S.: Nonstationary fuzzy sets. IEEE Trans. Fuzzy Syst. 16(4), 1072–1086 (2008)CrossRefGoogle Scholar
  36. 36.
    Torra, V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 25(6), 529–539 (2010)zbMATHGoogle Scholar
  37. 37.
    Atanassov, K.T.: Intuitionistic Fuzzy Sets, Theory and Applications. Springer (1999)Google Scholar
  38. 38.
    Yager, R.R.: Pythagorean fuzzy subsets. In: IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 2013 Joint, pp. 57–61. IEEE (2013)Google Scholar
  39. 39.
    Cuong, C.B.: Picture fuzzy sets. J. Comput. Sci. Cybern. 30(4), 409–420 (2014)Google Scholar
  40. 40.
    Yager, R.R.: Generalized orthopair fuzzy sets. IEEE Trans. Fuzzy Syst. 25(5), 1222–1230 (2017)CrossRefGoogle Scholar
  41. 41.
    Kutlu Gundogdu, F., Kahraman, C.: Spherical fuzzy sets and spherical fuzzy TOPSIS method. J. Intell. Fuzzy Syst. 36(1), 337–352 (2019)CrossRefGoogle Scholar
  42. 42.
    Senapati, T., Yager, R.R.: Fermatean fuzzy weighted averaging/geometric operators and its application in multi-criteria decision-making methods. Eng. Appl. Artif. Intell. 85, 112–121 (2019).  https://doi.org/10.1016/j.engappai.2019.05.012CrossRefGoogle Scholar
  43. 43.
    Senapati, T., Yager, R.R.: Some new operations over Fermatean fuzzy numbers and application of Fermatean fuzzy WPM in multiple criteria decision making. Informatica 30(2), 391–412 (2019).  https://doi.org/10.15388/informatica.2019.211CrossRefGoogle Scholar
  44. 44.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, MI (1975)Google Scholar
  45. 45.
    Holland, J.H.: Genetic algorithms. Sci. Am. 267, 66–72 (1992).  https://doi.org/10.1038/scientificamerican0792-66CrossRefGoogle Scholar
  46. 46.
    Miranda, V., Srinivasan, D., Proença, A.M.: Evolutionary computation in power systems. Electr. Power Syst. Res. 20(2), 89–98 (1998).  https://doi.org/10.1016/S0142-0615(97)00040-9CrossRefGoogle Scholar
  47. 47.
    Won, J.R., Park, Y.M.: Economic dispatch solutions with piecewise quadratic cost functions using improved genetic algorithm. Int. J. Electr. Power Energy Syst. 25(5), 355–361 (2003).  https://doi.org/10.1016/S0142-0615(02)00098-4CrossRefGoogle Scholar
  48. 48.
    Dorigo, M.: Optimization, learning and natural algorithms. PhD thesis, Dipartimento di Elettronica, Politecnico di Milano, Italy (in Italian) (1992)Google Scholar
  49. 49.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge, MA & London, UK (2004)Google Scholar
  50. 50.
    Yang, J., Zhuang, Y.: An improved ant colony optimization algorithm for solving a complex combinatorial optimization problem. Appl. Soft Comput. 10(2), 653–660 (2010).  https://doi.org/10.1016/j.asoc.2009.08.040CrossRefGoogle Scholar
  51. 51.
    Macura, W.K.: Ant Colony Algorithm. From MathWorld–A Wolfram Web Resource, Created by Eric W. Weisstein. http://mathworld.wolfram.com/AntColonyAlgorithm.html
  52. 52.
    Pincus, M.: A Monte Carlo method for the approximate solution of certain types of constrained optimization problems. Oper. Res. 18, 1225–1228 (1970)Google Scholar
  53. 53.
    Kirkpatrick, S., Gelatt, S., Vecchi, M.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Cerny, V.: Thermodynamical approach to the travelling salesman problem. J. Optim. Theory Appl. 45(1), 41–51 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Özdağoğlu, G.: Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi. 22(2), 357–377 (2010)Google Scholar
  56. 56.
    Jarraya, B., Bouri, A.: Metaheuristic optimization backgrounds: a literature review. Int. J. Contemp. Bus. Stud. 3(12), 31–44 (2012)Google Scholar
  57. 57.
    Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13, 533–549 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Gendreau, M.: An Introduction to Tabu Search. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics. Kluwer Academic Publishers, New York (2003)Google Scholar
  59. 59.
    McCulloch, W.S., Pitts, W.A.: A logical calculus of the ideas immanent in neural nets. Bull. Math. Biophys. 5, 115–133 (1943).  https://doi.org/10.1007/BF02478259MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Cebi, S., Kahraman, C., Kaya, I.: Soft computing and computational intelligent techniques in the evaluation of emerging energy technologies. In: Vasant, P., Barsoum, N., Webb, J. (eds.) Innovation in Power, Control, and Optimization: Emerging Energy Technologies, pp. 164–197. IGI Global (2012)Google Scholar
  61. 61.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of Conference on Evolutionary Computation (CEC), pp. 1942–1948 (1995)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Industrial EngineeringYildiz Technical UniversityIstanbulTurkey
  2. 2.Department of Industrial EngineeringIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations